The idea of gaining muscle and losing fat at the same time seems impossible because of three widely held misconceptions: (a) to gain muscle you need a calorie surplus; (b) to lose fat you need a calorie deficit; and (c) you cannot achieve a calorie surplus and deficit at the same time.
Not too long ago, unfortunately I was in the right position to do some self-experiments in order to try to gain muscle and concurrently lose fat, without steroids, keeping my weight essentially constant (within a range of a few lbs). This was because I was obese, and then reached a point in the fat loss stage where I could stop losing weight while attempting to lose fat. This is indeed difficult and slow, as muscle gain itself is slow, and it apparently becomes slower as one tries to restrict fat gain. Compounding that is the fact that self-experimentation invariably leads to some mistakes.
The photos below show how I looked toward the end of my transformation from obese to relatively lean (right), and then about 1.5 years after that (left). During this time I gained muscle and lost fat, in equal amounts. How do I know that? It is because my weight is the same in both photos, even though on the left my body fat percentage is approximately 5 points lower. I estimate it to be slightly over 12 percent (on the left). This translates into a difference of about 7.5 lbs, of “fat turning into muscle”, so to speak.
A previous post on my transformation from obese to relatively lean has more measurement details (). Interestingly, I am very close to being overweight, technically speaking, in both photos above! That is, in both photos I have a body mass index that is close to 25. In fact, after putting on even a small amount of muscle, like I did, it is very easy for someone to reach a body mass index of 25. See the table below, from the body mass index article on Wikipedia ().
As someone gains more muscle and remains lean, approaching his or her maximum natural muscular potential, that person will approach the limit between the overweight and obese areas on the figure above. This will happen even though the person may be fairly lean, say with a body fat percentage in the single digits for men and around 14-18 percent for women. This applies primarily to the 5’7’’ – 5’11’’ range; things get somewhat distorted toward the extremes.
Contrast this with true obesity, as in the photo below. This photo was taken when I was obese, at the beach. If I recall it properly, it was taken on the Atlantic City seashore, or a beach nearby. I was holding a bottle of regular soda, which is emblematic of the situation in which many people find themselves in today’s urban societies. It reminds me of a passage in Gary Taubes’s book “Good Calories, Bad Calories” (), where someone who had recently discovered the deliciousness of water sweetened with sugar wondered why anyone “of means” would drink plain water ever again.
Now, you may rightfully say that a body composition change of about 7.5 lbs in 1.5 years is pitiful. Indeed, there are some people, typically young men, who will achieve this in a few months without steroids. But they are relatively rare; Scooby has a good summary of muscle gain expectations (). As for me, I am almost 50 years old, an age where muscle gain is not supposed to happen at all. I tend to gain fat very easily, but not muscle. And I was obese not too long ago. My results should be at the very low end of the scale of accomplishment for most people doing the right things.
By the way, the idea that muscle gain cannot happen after 40 years of age or so is another misconception; even though aging seems to promote muscle loss and fat gain, in part due to natural hormonal changes. There is evidence that many men may experience of low point (i.e., a trough) in their growth hormone and testosterone levels in their mid-40s, possibly due to a combination of modern diet and lifestyle factors. Still, many men in their 50s and 60s have higher levels ().
And what are the right things to do if one wants to gain muscle and lose fat at the same time? In my next post I will discuss the misconceptions mentioned at the beginning of this post, and a simple approach for concurrently gaining muscle and losing fat. The discussion will be based on my own experience and that of several HCE () users. The approach relies heavily on individual customization; so it will probably be easier to understand than to implement. Strength training is part of this simple strategy.
One puzzling aspect of strength training, from an evolutionary perspective, is that people tend to be able to do a lot more of it than is optimal for them. And, when they do even a bit more than they should, muscle gain stalls or even regresses. The minimalists frequently have the best results.
Showing posts with label my experience. Show all posts
Showing posts with label my experience. Show all posts
Monday, February 27, 2012
Monday, January 23, 2012
All diets succeed at first, and eventually fail
It is not very hard to find studies supporting one diet or another. Gardner and colleagues, for example, conducted a study in which the Atkins diet came out on top when compared with the Zone, Ornish, and LEARN diets (). In Dansinger and colleagues’ study (), on the other hand, following the Atkins diet led to relatively poor results compared with the Ornish, Weight Watchers, and Zone diets.
Often the diets compared have different macronutrient ratios, which end up becoming the focus of the comparison. Many consider Sacks and colleagues’ conclusion, based on yet another diet comparison study (), to be the most consistent with the body of evidence as a whole: “Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize”.
I think there is a different conclusion that is even more consistent with the body of evidence out there. This conclusion is highlighted by the findings of almost all diet studies where participants were followed for more than 1 year. But the relevant findings are typically buried in the papers that summarize the studies, and are almost never mentioned in the abstracts. Take for example the study by Toubro and Astrup (); Figure 3 below is used by the authors to highlight the study’s main reported finding: “Ad lib, low fat, high carbohydrate diet was superior to fixed energy intake for maintaining weight after a major weight loss”.
But what does the figure above really tell us? It tells us, quite simply, that both diets succeeded at first, and then eventually failed. One failed slightly less miserably than the other, in this study. The percentage of subjects that maintained a weight loss above 25 kg (about 55 lbs) approached zero after 12 months, in both diets. This leads us to the conclusion below, which is always missing in diet studies even when the evidence is staring back at us. This is arguably the conclusion that is the most consistent with the body of evidence out there.
All diets succeed at first, and eventually fail.
In using the terms “succeed” and “fail” I am referring to the diets’ effects on the majority of the participants. This is in fact better demonstrated by the figure below, from the same study by Toubro and Astrup; it is labeled as Figure 2 there. Most of the participants at a certain weight, lose a lot of weight within a period of 1 year or so, and after 2 years (see the two points at the far right) are at the same original weight again. What is the average time to regain back the weight? From what I’ve seen in the literature, all the weight and some tends to be regained after 2-3 years.
The regained weight is not at all lean body mass. It is primarily, if not entirely, body fat. In fact, many studies suggest that those who diet tend to have a higher percentage of body fat when they regain their original weight; proportionally to how fast they regain the weight lost. Since the extra body fat tends to cause additional problems, which are compounded by the dieting process’ toll on the body, those dieters would have been slightly better off not having dieted in the first place.
Guyenet and Schwartz have recently authored an article that summarizes quite nicely what tends to happen with both obese and lean dieters (). Take a look at Figure 2 of the article below. The obese need to lose body fat to improve health markers, and avoid a number of downstream complications, such as type 2 diabetes and cancer (). Yet, with very few exceptions, the obese (and even the overweight) remain obese (or overweight) after dieting; regardless of the diet.
So what about those exceptions, what do they do to lose significant amounts of body fat and keep it off? Well, I rarely use myself as an example for anything in this blog, but this is something with which I unfortunately/fortunately have personal experience. I was obese, lost about 60 lbs of weight, and kept it off for quite a while already (). Like most of the formerly obese, I can very easily gain body fat back.
But I don’t seem to be gaining back the formerly lost body fat, and the reason is consistent with some of the studies based on data from the National Weight Control Registry, which stores information about adults who lost 30 lbs or more of weight and kept it off for at least 1 year (). I systematically measure my weight, body fat percentage, and a number of other variables; probably even more than the average National Weight Control Registry member. Based on those measurements, I try to understand how my body responds in the short and long term to stimuli such as different exercise, types of food, calorie restriction, sleep patterns etc.
And I act accordingly to keep any body fat gain from happening; by, for example, varying calorie intake, increasing exercise intensity, varying the types of food I eat etc. With a few exceptions (e.g., avoiding industrial seed oils), there is no generic formula. Customization based on individual responses and cyclical patterns seems to be a must.
Looking back, it was relatively easy for me to lose all that fat. This is consistent with the studies summarized in this post; all diets that rely on caloric reduction work marvelously at first for most people. The really difficult part is to keep the body fat off. I believe that this is especially true as the initial years go by, and becomes easier after that. This has something to do with initial inertia, which I will discuss soon in a post on metabolic rates and their relationship with overall body mass.
For people living in the wild, I can see one thing working in their favor. And that is not regular starvation; sapiens is too smart for that. It is laziness. Hunger has to reach a certain threshold for people to want to do some work to get their food; this acts as a natural body composition regulator, something that I intend to discuss in one of my next posts. It seems that people almost never become obese in the wild, without access to industrial foods.
As for living in the wild, in spite of the romantic portrayals of it, the experience is not as appealing after you really try it. The book Yanomamo: The Fierce People () is a solid, if not somewhat shocking, reminder of that. I had the opportunity to meet and talk at length with its author, the great anthropologist Nap Chagnon, at one of the Human Behavior and Evolution Society conferences. The man is a real-life Indiana Jones ().
In the formerly obese, the body seems to resort to “guerrilla warfare”, employing all kinds of physiological and psychological mechanisms, some more subtle than others, to make sure that the lost fat is recovered. Why? I have some ideas, which I have discussed indirectly in posts throughout this blog, but I still need to understand the whole process a bit better. My ideas build on the notion of compensatory adaptation ().
You might have heard some very smart people say that you do not need to measure anything to lose body fat and keep it off. Many of those people have never been obese. Those who have been obese often had not cleared the 2-3 year “danger zone” by the time they made those statements.
There are many obese or overweight public figures (TV show hosts, actors, even health bloggers) who embark on a diet and lose a dramatic amount of body fat. They talk and/or write for a year or so about their success, and then either “disappear” or start complaining about health issues. Those health issues are often part of the “guerrilla warfare” I mentioned above.
A few persistent public figures will gain the fat back, in part or fully, and do the process all over again. It makes for interesting drama, and at least keeps those folks in the limelight.
Often the diets compared have different macronutrient ratios, which end up becoming the focus of the comparison. Many consider Sacks and colleagues’ conclusion, based on yet another diet comparison study (), to be the most consistent with the body of evidence as a whole: “Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize”.
I think there is a different conclusion that is even more consistent with the body of evidence out there. This conclusion is highlighted by the findings of almost all diet studies where participants were followed for more than 1 year. But the relevant findings are typically buried in the papers that summarize the studies, and are almost never mentioned in the abstracts. Take for example the study by Toubro and Astrup (); Figure 3 below is used by the authors to highlight the study’s main reported finding: “Ad lib, low fat, high carbohydrate diet was superior to fixed energy intake for maintaining weight after a major weight loss”.
But what does the figure above really tell us? It tells us, quite simply, that both diets succeeded at first, and then eventually failed. One failed slightly less miserably than the other, in this study. The percentage of subjects that maintained a weight loss above 25 kg (about 55 lbs) approached zero after 12 months, in both diets. This leads us to the conclusion below, which is always missing in diet studies even when the evidence is staring back at us. This is arguably the conclusion that is the most consistent with the body of evidence out there.
All diets succeed at first, and eventually fail.
In using the terms “succeed” and “fail” I am referring to the diets’ effects on the majority of the participants. This is in fact better demonstrated by the figure below, from the same study by Toubro and Astrup; it is labeled as Figure 2 there. Most of the participants at a certain weight, lose a lot of weight within a period of 1 year or so, and after 2 years (see the two points at the far right) are at the same original weight again. What is the average time to regain back the weight? From what I’ve seen in the literature, all the weight and some tends to be regained after 2-3 years.
The regained weight is not at all lean body mass. It is primarily, if not entirely, body fat. In fact, many studies suggest that those who diet tend to have a higher percentage of body fat when they regain their original weight; proportionally to how fast they regain the weight lost. Since the extra body fat tends to cause additional problems, which are compounded by the dieting process’ toll on the body, those dieters would have been slightly better off not having dieted in the first place.
Guyenet and Schwartz have recently authored an article that summarizes quite nicely what tends to happen with both obese and lean dieters (). Take a look at Figure 2 of the article below. The obese need to lose body fat to improve health markers, and avoid a number of downstream complications, such as type 2 diabetes and cancer (). Yet, with very few exceptions, the obese (and even the overweight) remain obese (or overweight) after dieting; regardless of the diet.
So what about those exceptions, what do they do to lose significant amounts of body fat and keep it off? Well, I rarely use myself as an example for anything in this blog, but this is something with which I unfortunately/fortunately have personal experience. I was obese, lost about 60 lbs of weight, and kept it off for quite a while already (). Like most of the formerly obese, I can very easily gain body fat back.
But I don’t seem to be gaining back the formerly lost body fat, and the reason is consistent with some of the studies based on data from the National Weight Control Registry, which stores information about adults who lost 30 lbs or more of weight and kept it off for at least 1 year (). I systematically measure my weight, body fat percentage, and a number of other variables; probably even more than the average National Weight Control Registry member. Based on those measurements, I try to understand how my body responds in the short and long term to stimuli such as different exercise, types of food, calorie restriction, sleep patterns etc.
And I act accordingly to keep any body fat gain from happening; by, for example, varying calorie intake, increasing exercise intensity, varying the types of food I eat etc. With a few exceptions (e.g., avoiding industrial seed oils), there is no generic formula. Customization based on individual responses and cyclical patterns seems to be a must.
Looking back, it was relatively easy for me to lose all that fat. This is consistent with the studies summarized in this post; all diets that rely on caloric reduction work marvelously at first for most people. The really difficult part is to keep the body fat off. I believe that this is especially true as the initial years go by, and becomes easier after that. This has something to do with initial inertia, which I will discuss soon in a post on metabolic rates and their relationship with overall body mass.
For people living in the wild, I can see one thing working in their favor. And that is not regular starvation; sapiens is too smart for that. It is laziness. Hunger has to reach a certain threshold for people to want to do some work to get their food; this acts as a natural body composition regulator, something that I intend to discuss in one of my next posts. It seems that people almost never become obese in the wild, without access to industrial foods.
As for living in the wild, in spite of the romantic portrayals of it, the experience is not as appealing after you really try it. The book Yanomamo: The Fierce People () is a solid, if not somewhat shocking, reminder of that. I had the opportunity to meet and talk at length with its author, the great anthropologist Nap Chagnon, at one of the Human Behavior and Evolution Society conferences. The man is a real-life Indiana Jones ().
In the formerly obese, the body seems to resort to “guerrilla warfare”, employing all kinds of physiological and psychological mechanisms, some more subtle than others, to make sure that the lost fat is recovered. Why? I have some ideas, which I have discussed indirectly in posts throughout this blog, but I still need to understand the whole process a bit better. My ideas build on the notion of compensatory adaptation ().
You might have heard some very smart people say that you do not need to measure anything to lose body fat and keep it off. Many of those people have never been obese. Those who have been obese often had not cleared the 2-3 year “danger zone” by the time they made those statements.
There are many obese or overweight public figures (TV show hosts, actors, even health bloggers) who embark on a diet and lose a dramatic amount of body fat. They talk and/or write for a year or so about their success, and then either “disappear” or start complaining about health issues. Those health issues are often part of the “guerrilla warfare” I mentioned above.
A few persistent public figures will gain the fat back, in part or fully, and do the process all over again. It makes for interesting drama, and at least keeps those folks in the limelight.
Labels:
Atkins,
body fat,
cancer,
LEARN,
my experience,
National Weight Control Registry,
Ornish,
Weight Watchers,
Zone
Monday, November 21, 2011
My transformation: How I looked 10 years ago next to a thin man called Royce Gracie
The photos below were taken about 10 years ago. The first is at a restaurant near Torrance, California. (As you can see, the restaurant was about to close; we were the last customers.) I am standing next to Royce Grace, who had by then become a sensation (). He became a sensation by easily defeating nearly every champion fighter that was placed in front of him. In case you are wondering, Royce is 6’1” and I am 5’8”. The second photo also has Royce’s manager in it – that is his wife. Their children’s names both start with the letter “K”. I wonder how big they are right now.
I think that at the time these photos were taken I weighed around 200-210 lbs. Even though I am much shorter than Royce, I outweighed him by around 40 lbs. Now I weigh 150 lbs, at about 11 percent body fat, and look like the photo on the top-right area of this blog - essentially like a thin guy who does some manual labor for a living, I guess. A post is available discussing the "how" part of this transformation (). I only put a shirtless photo here after several readers told me that my previous photo looked out of place in this blog.
My day job is not even remotely related to fitness instruction. I am a college professor, and like to think of myself as a scholar. I don’t care much about my personal appearance; never did. At least in my mind, putting up shirtless photos on the web should not be done gratuitously. If you are a fitness instructor, or an athlete, that is fine. In my case, it is acceptable in the context of telling people that a few minutes of mid-day sun exposure, avoiding sunburn, yields 10,000 IU of skin-produced vitamin D, which is about 20 times more than one can get through most "fortified" industrial foods.
Royce is such a nice guy that, after much insistence, he paid for the dinner, and then we drove to his house and talked until about midnight. He had told me of a flight the next morning to Chicago, so I ended the interview and thanked him for the wonderful time we had spent together. I had to talk him out of driving ahead of me to I-405; he wanted to make sure I was not going to get lost at that time of the night. This was someone who was considered a demigod at the time in some circles. A humble, wonderful person.
Royce helped launch what is today the mega-successful Ultimate Fighting Championship franchise (), which was then still a no holders barred mixed martial arts tournament. At the time the photos were taken I was interviewing him for my book Compensatory Adaptation, which came out in print soon after (). The book has a full chapter on the famous Gracie Family, including his father Helio and his brother Rickson.
I talked before about the notion of compensatory adaptation and how it applies to our understanding of how we respond to diet and lifestyle changes (). In this context, I believe that the compensatory adaptation notion is far superior to that of hormesis (), which I think is interesting but overused and overrated.
The notion of compensatory adaptation has been picked up in the field of information systems, my main field of academic research. In this field, which deals with how people respond to technologies, it is part of a broader theory called media naturalness theory (). There are already several people who have received doctorates by testing this theory from novel angles. There are also several people today who call themselves experts in compensatory adaptation and media naturalness theory.
The above creates an odd situation, and something funny that happened with me a few times already. I do some new empirical research on compensatory adaptation, looking at it from a new angle, write an academic paper about it (often with one or more co-authors who helped me collect empirical data), and submit it to a selective refereed journal. Then an "expert" reviewer, who does not know who the authors of the paper are (this is called a "blind" review), recommends rejection of the paper because “the authors of this paper clearly do not understand the notion of compensatory adaptation”. Sometimes something like this is added: “the authors should read the literature on compensatory adaptation more carefully, particularly Kock (2004)” - an article that has a good number of citations to it ().
Oh well, the beauty of the academic refereeing process …
I think that at the time these photos were taken I weighed around 200-210 lbs. Even though I am much shorter than Royce, I outweighed him by around 40 lbs. Now I weigh 150 lbs, at about 11 percent body fat, and look like the photo on the top-right area of this blog - essentially like a thin guy who does some manual labor for a living, I guess. A post is available discussing the "how" part of this transformation (). I only put a shirtless photo here after several readers told me that my previous photo looked out of place in this blog.
My day job is not even remotely related to fitness instruction. I am a college professor, and like to think of myself as a scholar. I don’t care much about my personal appearance; never did. At least in my mind, putting up shirtless photos on the web should not be done gratuitously. If you are a fitness instructor, or an athlete, that is fine. In my case, it is acceptable in the context of telling people that a few minutes of mid-day sun exposure, avoiding sunburn, yields 10,000 IU of skin-produced vitamin D, which is about 20 times more than one can get through most "fortified" industrial foods.
Royce is such a nice guy that, after much insistence, he paid for the dinner, and then we drove to his house and talked until about midnight. He had told me of a flight the next morning to Chicago, so I ended the interview and thanked him for the wonderful time we had spent together. I had to talk him out of driving ahead of me to I-405; he wanted to make sure I was not going to get lost at that time of the night. This was someone who was considered a demigod at the time in some circles. A humble, wonderful person.
Royce helped launch what is today the mega-successful Ultimate Fighting Championship franchise (), which was then still a no holders barred mixed martial arts tournament. At the time the photos were taken I was interviewing him for my book Compensatory Adaptation, which came out in print soon after (). The book has a full chapter on the famous Gracie Family, including his father Helio and his brother Rickson.
I talked before about the notion of compensatory adaptation and how it applies to our understanding of how we respond to diet and lifestyle changes (). In this context, I believe that the compensatory adaptation notion is far superior to that of hormesis (), which I think is interesting but overused and overrated.
The notion of compensatory adaptation has been picked up in the field of information systems, my main field of academic research. In this field, which deals with how people respond to technologies, it is part of a broader theory called media naturalness theory (). There are already several people who have received doctorates by testing this theory from novel angles. There are also several people today who call themselves experts in compensatory adaptation and media naturalness theory.
The above creates an odd situation, and something funny that happened with me a few times already. I do some new empirical research on compensatory adaptation, looking at it from a new angle, write an academic paper about it (often with one or more co-authors who helped me collect empirical data), and submit it to a selective refereed journal. Then an "expert" reviewer, who does not know who the authors of the paper are (this is called a "blind" review), recommends rejection of the paper because “the authors of this paper clearly do not understand the notion of compensatory adaptation”. Sometimes something like this is added: “the authors should read the literature on compensatory adaptation more carefully, particularly Kock (2004)” - an article that has a good number of citations to it ().
Oh well, the beauty of the academic refereeing process …
Labels:
compensatory adaptation,
my experience,
Royce Gracie
Monday, August 1, 2011
There is no doubt that abnormally elevated insulin is associated with body fat accumulation
For as long as diets existed there have been influential proponents, or believers, who at some point had what they thought were epiphanies. From that point forward, they disavowed the diets that they formally endorsed. Low carbohydrate dieting seems to be in this situation now. Among other things, it has been recently “discovered” that the idea that insulin drives fat into body fat cells is “wrong”.
Based on some of the comments I have been receiving lately, apparently a few readers think that I am one of those “enlightened”. If you are interested in what I have been eating, for quite some time now, just click on the link at the top of this blog that refers to my transformation. It is essentially high in all macronutrients on days that I exercise, and low in carbohydrates and calories on days that I don’t. It is a cyclic approach that works for me; calorie surpluses on some days and calorie deficits on other days.
But let me set the record straight regarding what I think: there is no doubt that insulin is associated with body fat accumulation. I was told that an influential health blogger (whom I respect a lot) denied this recently, going to the extreme of saying that no professional metabolism or endocrinology researcher believes in it, but I couldn’t find any evidence of that statement. It is not hard at all to find professional metabolism and endocrinology researchers who have asserted that insulin is associated with body fat accumulation, based on very reliable evidence. Actually, this is Biochemistry 101.
What I think is truly unclear is whether insulin spikes associated with carbohydrate-rich foods in general are the cause of obesity. This idea is, indeed, probably wrong given the evidence we have from various human populations whose members consume plenty of non-industrialized carbohydrate-rich foods. On a related note, I particularly disagree with the notion that the pancreas gets tired over time due to having to secrete insulin in bursts, which seems to also be one of the foundations on which many low carbohydrate diet varieties rest.
As with almost everything related to health, the role of insulin in body fat gain is complex, and part of that complexity is due to the nonlinear relationship between body fat gain and postprandial insulin release. Industrial carbohydrate-rich foods have a much higher glycemic load than natural carbohydrate-rich foods, even though their glycemic index may be the same in some cases. In other words, the quantity of easily digestible carbohydrates per gram is much higher in industrial carbohydrate-rich foods.
In normoglycemic folks, this leads to an abnormally elevated insulin response, among other hormonal responses. For example, circulating growth hormone, which promotes body fat loss, is inversely correlated with circulating insulin. Insulin drives fat, typically from dietary sources of fat, into adipocytes. That fat may also come from excess carbohydrates, packaged into VLDL particles.
Under normal circumstances, that would be fine, since our body is designed to store fat and release it as needed. But the abnormal insulin response elicited by industrial carbohydrate-rich foods, together with other hormonal responses, leads to a little more body fat accumulation, and for longer, than it should. And I’m talking here about people without any metabolic damage. Saturated and monounsaturated fats are healthy when eaten, but when they are stored as excess body fat, they become pro-inflammatory.
Body fat is like an organ, secreting many hormones into the bloodstream, several of which are pro-inflammatory. One of those pro-inflammatory hormones, which I believe is closely linked with many diseases of civilization, is tumor necrosis factor. (The acronym is now TNF. Apparently the “-alpha” after its name and acronym has been dropped recently.) Dietary fat, particularly saturated fat, seems to be anti-inflammatory. In other words, body fat accumulation is the problem. You only need 30 g/d of excess body fat accumulation to gain around 24 lbs of fat per year. Over three years, that will add up to over 70 lbs of body fat.
In my view, ultimately it is excess inflammation (which is, in essence, a vascular response) that is at the source of most of the diseases of civilization.
That is where the nonlinearity comes in. Insulin is healthy up to a point. Beyond that, it starts causing health problems, over time. And one of the main mechanisms by which it does so is via excessive body fat accumulation, with different damage threshold levels for different people. Insulin may decrease appetite as it goes up, but it increases it if goes down too much. If it goes up abnormally, typically it will go down too much. As it reaches a trough it induces hypoglycemia, even if mildly.
Take a look at the graph below, from this post showing the glucose variations in normoglycemic individuals. There is a lot of variation among different individuals, but it is clear that the magnitude of the hypoglycemic dips is inversely correlated with the magnitude of the glucose spikes. That inverse correlation is due primarily to the effect of insulin. Under normal circumstances, a decrease in circulating insulin would promote an increase in free fatty acids in circulation, which would normally have a suppressing effect on hunger in the hours after a meal. But industrial carbohydrate-rich foods lead to increases and decreases in glucose and insulin that are too steep, causing the opposite effect.
You may ask: why do you keep talking about industrial carbohydrate-rich foods? Why not talk about industrial protein- or fat-rich foods as well? The reason is that the food industry has not been very successful at producing industrial protein- or fat-rich foods that are palatable without adding a lot of carbohydrate to them.
More often than not they need enough carbohydrate added in the form of sugar to become truly addictive.
Based on some of the comments I have been receiving lately, apparently a few readers think that I am one of those “enlightened”. If you are interested in what I have been eating, for quite some time now, just click on the link at the top of this blog that refers to my transformation. It is essentially high in all macronutrients on days that I exercise, and low in carbohydrates and calories on days that I don’t. It is a cyclic approach that works for me; calorie surpluses on some days and calorie deficits on other days.
But let me set the record straight regarding what I think: there is no doubt that insulin is associated with body fat accumulation. I was told that an influential health blogger (whom I respect a lot) denied this recently, going to the extreme of saying that no professional metabolism or endocrinology researcher believes in it, but I couldn’t find any evidence of that statement. It is not hard at all to find professional metabolism and endocrinology researchers who have asserted that insulin is associated with body fat accumulation, based on very reliable evidence. Actually, this is Biochemistry 101.
What I think is truly unclear is whether insulin spikes associated with carbohydrate-rich foods in general are the cause of obesity. This idea is, indeed, probably wrong given the evidence we have from various human populations whose members consume plenty of non-industrialized carbohydrate-rich foods. On a related note, I particularly disagree with the notion that the pancreas gets tired over time due to having to secrete insulin in bursts, which seems to also be one of the foundations on which many low carbohydrate diet varieties rest.
As with almost everything related to health, the role of insulin in body fat gain is complex, and part of that complexity is due to the nonlinear relationship between body fat gain and postprandial insulin release. Industrial carbohydrate-rich foods have a much higher glycemic load than natural carbohydrate-rich foods, even though their glycemic index may be the same in some cases. In other words, the quantity of easily digestible carbohydrates per gram is much higher in industrial carbohydrate-rich foods.
In normoglycemic folks, this leads to an abnormally elevated insulin response, among other hormonal responses. For example, circulating growth hormone, which promotes body fat loss, is inversely correlated with circulating insulin. Insulin drives fat, typically from dietary sources of fat, into adipocytes. That fat may also come from excess carbohydrates, packaged into VLDL particles.
Under normal circumstances, that would be fine, since our body is designed to store fat and release it as needed. But the abnormal insulin response elicited by industrial carbohydrate-rich foods, together with other hormonal responses, leads to a little more body fat accumulation, and for longer, than it should. And I’m talking here about people without any metabolic damage. Saturated and monounsaturated fats are healthy when eaten, but when they are stored as excess body fat, they become pro-inflammatory.
Body fat is like an organ, secreting many hormones into the bloodstream, several of which are pro-inflammatory. One of those pro-inflammatory hormones, which I believe is closely linked with many diseases of civilization, is tumor necrosis factor. (The acronym is now TNF. Apparently the “-alpha” after its name and acronym has been dropped recently.) Dietary fat, particularly saturated fat, seems to be anti-inflammatory. In other words, body fat accumulation is the problem. You only need 30 g/d of excess body fat accumulation to gain around 24 lbs of fat per year. Over three years, that will add up to over 70 lbs of body fat.
In my view, ultimately it is excess inflammation (which is, in essence, a vascular response) that is at the source of most of the diseases of civilization.
That is where the nonlinearity comes in. Insulin is healthy up to a point. Beyond that, it starts causing health problems, over time. And one of the main mechanisms by which it does so is via excessive body fat accumulation, with different damage threshold levels for different people. Insulin may decrease appetite as it goes up, but it increases it if goes down too much. If it goes up abnormally, typically it will go down too much. As it reaches a trough it induces hypoglycemia, even if mildly.
Take a look at the graph below, from this post showing the glucose variations in normoglycemic individuals. There is a lot of variation among different individuals, but it is clear that the magnitude of the hypoglycemic dips is inversely correlated with the magnitude of the glucose spikes. That inverse correlation is due primarily to the effect of insulin. Under normal circumstances, a decrease in circulating insulin would promote an increase in free fatty acids in circulation, which would normally have a suppressing effect on hunger in the hours after a meal. But industrial carbohydrate-rich foods lead to increases and decreases in glucose and insulin that are too steep, causing the opposite effect.
You may ask: why do you keep talking about industrial carbohydrate-rich foods? Why not talk about industrial protein- or fat-rich foods as well? The reason is that the food industry has not been very successful at producing industrial protein- or fat-rich foods that are palatable without adding a lot of carbohydrate to them.
More often than not they need enough carbohydrate added in the form of sugar to become truly addictive.
Monday, June 6, 2011
What is a good low carbohydrate diet? It is a low calorie one
My interview with Jimmy Moore should be up on the day that this post becomes available. (I usually write my posts on weekends and schedule them for release at the beginning of the following weeks.) So the time is opportune for me to try to aswer this question: What is a good low carbohydrate diet?
For me, and many people I know, the answer is: a low calorie one. What this means, in simple terms, is that a good low carbohydrate diet is one with plenty of seafood and organ meats in it, and also plenty of veggies. These are low carbohydrate foods that are also naturally low in calories. Conversely, a low carbohydrate diet of mostly beef and eggs would be a high calorie one.
Seafood and organ meats provide essential fatty acids and are typically packed with nutrients. Because of that, they tend to be satiating. In fact, certain organ meats, such as beef liver, are so packed with nutrients that it is a good idea to limit their consumption. I suggest eating beef liver once or twice a week only. As for seafood, it seems like a good idea to me to get half of one’s protein from them.
Does this mean that the calories-in-calories-out idea is correct? No, and there is no need to resort to complicated and somewhat questionable feedback-loop arguments to prove that calories-in-calories-out is wrong. Just consider this hypothetical scenario; a thought experiment. Take two men, one 25 years of age and the other 65, both with the same weight. Put them on the same exact diet, on the same exact weight training regime, and keep everything else the same.
What will happen? Typically the 65-year-old will put on more body fat than the 25-year-old, and the latter will put on more lean body mass. This will happen in spite of the same exact calories-in-calories-out profile. Why? Because their hormonal mixes are different. The 65-year-old will typically have lower levels of circulating growth hormone and testosterone, both of which significantly affect body composition.
As you can see, it is not all about insulin, as has been argued many times before. In fact, average and/or fasting insulin may be the same for the 65- and 25-year-old men. And, still, the 65-year-old will have trouble keeping his body fat low and gaining muscle. There are other hormones involved, such as leptin and adiponectin, and probably several that we don’t know about yet.
A low carbohydrate diet appears to be ideal for many people, whether that is due to a particular health condition (e.g., diabetes) or simply due to a genetic makeup that favors this type of diet. By adopting a low carbohydrate diet with plenty of seafood, organ meats, and veggies, you will make it a low calorie diet. If that leads to a calorie deficit that is too large, you can always add a bit more of fat to it. For example, by cooking fish with butter and adding bacon to beef liver.
One scenario where I don’t see the above working well is if you are a competitive athlete who depletes a significant amount of muscle glycogen on a daily basis – e.g., 250 g or more. In this case, it will be very difficult to replenish glycogen only with protein, so the person will need more carbohydrates. He or she would need a protein intake in excess of 500 g per day for replenishing 250 g of glycogen only with protein.
For me, and many people I know, the answer is: a low calorie one. What this means, in simple terms, is that a good low carbohydrate diet is one with plenty of seafood and organ meats in it, and also plenty of veggies. These are low carbohydrate foods that are also naturally low in calories. Conversely, a low carbohydrate diet of mostly beef and eggs would be a high calorie one.
Seafood and organ meats provide essential fatty acids and are typically packed with nutrients. Because of that, they tend to be satiating. In fact, certain organ meats, such as beef liver, are so packed with nutrients that it is a good idea to limit their consumption. I suggest eating beef liver once or twice a week only. As for seafood, it seems like a good idea to me to get half of one’s protein from them.
Does this mean that the calories-in-calories-out idea is correct? No, and there is no need to resort to complicated and somewhat questionable feedback-loop arguments to prove that calories-in-calories-out is wrong. Just consider this hypothetical scenario; a thought experiment. Take two men, one 25 years of age and the other 65, both with the same weight. Put them on the same exact diet, on the same exact weight training regime, and keep everything else the same.
What will happen? Typically the 65-year-old will put on more body fat than the 25-year-old, and the latter will put on more lean body mass. This will happen in spite of the same exact calories-in-calories-out profile. Why? Because their hormonal mixes are different. The 65-year-old will typically have lower levels of circulating growth hormone and testosterone, both of which significantly affect body composition.
As you can see, it is not all about insulin, as has been argued many times before. In fact, average and/or fasting insulin may be the same for the 65- and 25-year-old men. And, still, the 65-year-old will have trouble keeping his body fat low and gaining muscle. There are other hormones involved, such as leptin and adiponectin, and probably several that we don’t know about yet.
A low carbohydrate diet appears to be ideal for many people, whether that is due to a particular health condition (e.g., diabetes) or simply due to a genetic makeup that favors this type of diet. By adopting a low carbohydrate diet with plenty of seafood, organ meats, and veggies, you will make it a low calorie diet. If that leads to a calorie deficit that is too large, you can always add a bit more of fat to it. For example, by cooking fish with butter and adding bacon to beef liver.
One scenario where I don’t see the above working well is if you are a competitive athlete who depletes a significant amount of muscle glycogen on a daily basis – e.g., 250 g or more. In this case, it will be very difficult to replenish glycogen only with protein, so the person will need more carbohydrates. He or she would need a protein intake in excess of 500 g per day for replenishing 250 g of glycogen only with protein.
Labels:
adiponectin,
Atkins,
carbohydrates,
fish,
growth hormone,
insulin,
Jimmy Moore,
low carb,
my experience
Monday, May 9, 2011
Looking for a good orthodontist? My recommendation is Dr. Meat
The figure below is one of many in Weston Price’s outstanding book Nutrition and Physical Degeneration showing evidence of teeth crowding among children whose parents moved from a traditional diet of minimally processed foods to a Westernized diet.
Tooth crowding and other forms of malocclusion are widespread and on the rise in populations that have adopted Westernized diets (most of us). Some blame it on dental caries, particularly in early childhood; dental caries are also a hallmark of Westernized diets. Varrela (2007), however, in a study of Finnish skulls from the 15th and 16th centuries found evidence of dental caries, but not of malocclusion, which Varrela reported as fairly high in modern Finns.
Why does malocclusion occur at all in the context of Westernized diets? Lombardi (1982) put forth an evolutionary hypothesis:
So what is one to do? Apparently getting babies to eat meat is not a bad idea. They may well just chew on it for a while and spit it out. The likelihood of meat inducing dental caries is very low, as most low carbers can attest. (In fact, low carbers who eat mostly meat often see dental caries heal.)
Concerned about the baby choking on meat? At the time of this writing a Google search yielded this: No results found for “baby choked on meat”. Conversely, Google returned 219 hits for “baby choked on milk”.
What if you have a child with crowded teeth as a preteen or teen? Too late? Should you get him or her to use “cute” braces? Our daughter had crowded teeth a few years ago, as a preteen. It overlapped with the period of my transformation, which meant that she started having a lot more natural foods to eat. There were more of those around, some of which require serious chewing, and less industrialized soft foods. Those natural foods included hard-to-chew beef cuts, served multiple times a week.
We noticed improvement right away, and in a few years the crowding disappeared. Now she has the kind of smile that could land her a job as a toothpaste model:
The key seems to be to start early, in developmental years. If you are an adult with crowded teeth, malocclusion may not be solved by either tough foods or braces. With braces, you may even end up with other problems (see this).
Tooth crowding and other forms of malocclusion are widespread and on the rise in populations that have adopted Westernized diets (most of us). Some blame it on dental caries, particularly in early childhood; dental caries are also a hallmark of Westernized diets. Varrela (2007), however, in a study of Finnish skulls from the 15th and 16th centuries found evidence of dental caries, but not of malocclusion, which Varrela reported as fairly high in modern Finns.
Why does malocclusion occur at all in the context of Westernized diets? Lombardi (1982) put forth an evolutionary hypothesis:
“In modern man there is little attrition of the teeth because of a soft, processed diet; this can result in dental crowding and impaction of the third molars. It is postulated that the tooth-jaw size discrepancy apparent in modern man as dental crowding is, in primitive man, a crucial biologic adaptation imposed by the selection pressures of a demanding diet that maintains sufficient chewing surface area for long-term survival. Selection pressures for teeth large enough to withstand a rigorous diet have been relaxed only recently in advanced populations, and the slow pace of evolutionary change has not yet brought the teeth and jaws into harmonious relationship.”
So what is one to do? Apparently getting babies to eat meat is not a bad idea. They may well just chew on it for a while and spit it out. The likelihood of meat inducing dental caries is very low, as most low carbers can attest. (In fact, low carbers who eat mostly meat often see dental caries heal.)
Concerned about the baby choking on meat? At the time of this writing a Google search yielded this: No results found for “baby choked on meat”. Conversely, Google returned 219 hits for “baby choked on milk”.
What if you have a child with crowded teeth as a preteen or teen? Too late? Should you get him or her to use “cute” braces? Our daughter had crowded teeth a few years ago, as a preteen. It overlapped with the period of my transformation, which meant that she started having a lot more natural foods to eat. There were more of those around, some of which require serious chewing, and less industrialized soft foods. Those natural foods included hard-to-chew beef cuts, served multiple times a week.
We noticed improvement right away, and in a few years the crowding disappeared. Now she has the kind of smile that could land her a job as a toothpaste model:
The key seems to be to start early, in developmental years. If you are an adult with crowded teeth, malocclusion may not be solved by either tough foods or braces. With braces, you may even end up with other problems (see this).
Labels:
braces,
dental caries,
malocclusion,
my experience,
research
Sunday, February 6, 2011
Is working standing up too expensive? It could cost you as little as $10
Spending too much time sitting down is clearly unnatural, particularly if you sit down on very comfortable chairs. Sitting down per se is probably natural, given the human anatomy, but not sitting down for hours in the same position. Also, comfortable furniture is an apparently benign Neolithic invention, but over several years it may stealthily contributed to the metabolic syndrome and the diseases of civilization.
Getting an elevated workstation may be a bit expensive. At work, you may have to go through a bit of a battle with your employer to get it (unless you are "teh boz"), only to find out that having to work standing up all the time is not what you really wanted. That may not be very natural either. So what is one to do? One possible solution is to buy a small foldable plastic table (or chair) like the one on the figure below, which may cost you less than $10, and put it on your work desk. I have been doing this for quite a while now, and it works fine for me.
The photo above shows a laptop computer. Nevertheless, you can use this table-over-table approach with a desktop computer as well. And you still keep the space under the foldable table, which you can use to place other items. With a desktop computer this approach would probably require two foldable tables to elevate the screen, keyboard, and mouse. This approach also works for reading documents and writing with a pen or pencil; just put a thick sheet of paper on the foldable table to make a flat surface (if the foldable table’s surface is not flat already). And you don’t have to be standing up all the time; you can sit down as well after removing the foldable table. It takes me about 5 seconds to do or undo this setup.
When you sit down, you may want to consider using a pillow like the one on the photo to force yourself to sit upright. (You can use it as shown, or place the pillow flat on the chair and sit on its edge.) Sitting on a very comfy chair with back support prevents you from using the various abdominal and back muscles needed to maintain posture. As a result, you may find yourself unusually prone to low back injuries and suffering from “mysterious” abdominal discomfort. You will also very likely decrease your nonexercise activity thermogenesis (NEAT), which is a major calorie expenditure regulator.
With posture stabilization muscles, as with almost everything else in the human body, the reality is this: if you don’t use them, you lose them.
Getting an elevated workstation may be a bit expensive. At work, you may have to go through a bit of a battle with your employer to get it (unless you are "teh boz"), only to find out that having to work standing up all the time is not what you really wanted. That may not be very natural either. So what is one to do? One possible solution is to buy a small foldable plastic table (or chair) like the one on the figure below, which may cost you less than $10, and put it on your work desk. I have been doing this for quite a while now, and it works fine for me.
The photo above shows a laptop computer. Nevertheless, you can use this table-over-table approach with a desktop computer as well. And you still keep the space under the foldable table, which you can use to place other items. With a desktop computer this approach would probably require two foldable tables to elevate the screen, keyboard, and mouse. This approach also works for reading documents and writing with a pen or pencil; just put a thick sheet of paper on the foldable table to make a flat surface (if the foldable table’s surface is not flat already). And you don’t have to be standing up all the time; you can sit down as well after removing the foldable table. It takes me about 5 seconds to do or undo this setup.
When you sit down, you may want to consider using a pillow like the one on the photo to force yourself to sit upright. (You can use it as shown, or place the pillow flat on the chair and sit on its edge.) Sitting on a very comfy chair with back support prevents you from using the various abdominal and back muscles needed to maintain posture. As a result, you may find yourself unusually prone to low back injuries and suffering from “mysterious” abdominal discomfort. You will also very likely decrease your nonexercise activity thermogenesis (NEAT), which is a major calorie expenditure regulator.
With posture stabilization muscles, as with almost everything else in the human body, the reality is this: if you don’t use them, you lose them.
Wednesday, September 22, 2010
Low nonexercise activity thermogenesis: Uncooperative genes or comfy furniture?
The degree of nonexercise activity thermogenesis (NEAT) seems to a major factor influencing the amount of fat gained or lost by an individual. It also seems to be strongly influenced by genetics, because NEAT is largely due to involuntary activities like fidgeting.
But why should this be?
The degree to which different individuals will develop diseases of civilization in response to consumption of refined carbohydrate-rich foods can also be seen as influenced by genetics. After all, there are many people who eat those foods and are thin and healthy, and that appears to be in part a family trait. But whether we consume those products or not is largely within our control.
So, it is quite possible that NEAT is influenced by genetics, but the fact that NEAT is low in so many people should be a red flag. In the same way that the fact that so many people who eat refined carbohydrate-rich foods are obese should be a red flag. Moreover, modern isolated hunter-gatherers tend to have low levels of body fat. Given the importance of NEAT for body fat regulation, it is not unreasonable to assume that NEAT is elevated in hunter-gatherers, compared to modern urbanites. Hunter-gatherers live more like our Paleolithic ancestors than modern urbanites.
True genetic diseases, caused by recent harmful mutations, are usually rare. If low NEAT were truly a genetic “disease”, those with low NEAT should be a small minority. That is not the case. It is more likely that the low NEAT that we see in modern urbanites is due to a maladaptation of our Stone Age body to modern life, in the same way that our Stone Age body is maladapted to the consumption of foods rich in refined grains and seeds.
What could have increased NEAT among our Paleolithic ancestors, and among modern isolated hunter-gatherers?
One thing that comes to mind is lack of comfortable furniture, particularly comfortable chairs (photo below from: prlog.org). It is quite possible that our Paleolithic ancestors invented some rudimentary forms of furniture, but they would have been much less comfortable than modern furniture used in most offices and homes. The padding of comfy office chairs is not very easy to replicate with stones, leaves, wood, or even animal hides. You need engineering to design it; you need industry to produce that kind of thing.
I have been doing a little experiment with myself, where I do things that force me to sit tall and stand while working in my office, instead of sitting back and “relaxing”. Things like putting a pillow on the chair so that I cannot rest my back on it, or placing my computer on an elevated surface so that I am forced to work while standing up. I tend to move a lot more when I do those things, and the movement is largely involuntary. These are small but constant movements, a bit like fidgeting. (It would be interesting to tape myself and actually quantify the amount of movement.)
It seems that one can induce an increase in NEAT, which is largely due to involuntary activities, by doing some voluntary things like placing a pillow on a chair or working while standing up.
Is it possible that the unnaturalness of comfy furniture, and particularly of comfy chairs, is contributing (together with other factors) to not only making us fat but also having low-back problems?
Both obesity and low-back problems are widespread among modern urbanites. Yet, from an evolutionary perspective, they should not be. They likely impaired survival success among our ancestors, and thus impaired their reproductive success. Evolution “gets angry” at these things; over time it wipes them out. In my reading of studies of hunter-gatherers, I don’t recall a single instance in which obesity and low-back problems were described as being widespread.
But why should this be?
The degree to which different individuals will develop diseases of civilization in response to consumption of refined carbohydrate-rich foods can also be seen as influenced by genetics. After all, there are many people who eat those foods and are thin and healthy, and that appears to be in part a family trait. But whether we consume those products or not is largely within our control.
So, it is quite possible that NEAT is influenced by genetics, but the fact that NEAT is low in so many people should be a red flag. In the same way that the fact that so many people who eat refined carbohydrate-rich foods are obese should be a red flag. Moreover, modern isolated hunter-gatherers tend to have low levels of body fat. Given the importance of NEAT for body fat regulation, it is not unreasonable to assume that NEAT is elevated in hunter-gatherers, compared to modern urbanites. Hunter-gatherers live more like our Paleolithic ancestors than modern urbanites.
True genetic diseases, caused by recent harmful mutations, are usually rare. If low NEAT were truly a genetic “disease”, those with low NEAT should be a small minority. That is not the case. It is more likely that the low NEAT that we see in modern urbanites is due to a maladaptation of our Stone Age body to modern life, in the same way that our Stone Age body is maladapted to the consumption of foods rich in refined grains and seeds.
What could have increased NEAT among our Paleolithic ancestors, and among modern isolated hunter-gatherers?
One thing that comes to mind is lack of comfortable furniture, particularly comfortable chairs (photo below from: prlog.org). It is quite possible that our Paleolithic ancestors invented some rudimentary forms of furniture, but they would have been much less comfortable than modern furniture used in most offices and homes. The padding of comfy office chairs is not very easy to replicate with stones, leaves, wood, or even animal hides. You need engineering to design it; you need industry to produce that kind of thing.
I have been doing a little experiment with myself, where I do things that force me to sit tall and stand while working in my office, instead of sitting back and “relaxing”. Things like putting a pillow on the chair so that I cannot rest my back on it, or placing my computer on an elevated surface so that I am forced to work while standing up. I tend to move a lot more when I do those things, and the movement is largely involuntary. These are small but constant movements, a bit like fidgeting. (It would be interesting to tape myself and actually quantify the amount of movement.)
It seems that one can induce an increase in NEAT, which is largely due to involuntary activities, by doing some voluntary things like placing a pillow on a chair or working while standing up.
Is it possible that the unnaturalness of comfy furniture, and particularly of comfy chairs, is contributing (together with other factors) to not only making us fat but also having low-back problems?
Both obesity and low-back problems are widespread among modern urbanites. Yet, from an evolutionary perspective, they should not be. They likely impaired survival success among our ancestors, and thus impaired their reproductive success. Evolution “gets angry” at these things; over time it wipes them out. In my reading of studies of hunter-gatherers, I don’t recall a single instance in which obesity and low-back problems were described as being widespread.
Labels:
body fat,
comfortable furniture,
low back pain,
my experience,
NEAT,
thermogenesis
Tuesday, July 20, 2010
My transformation: I cannot remember the last time I had a fever
The two photos below (click to enlarge) were taken 4 years apart. The one on the left was taken in 2006, when I weighed 210 lbs (95 kg). Since my height is 5 ft 8 in, at that weight I was an obese person, with over 30 percent body fat. The one on the right was taken in 2010, at a weight of 150 lbs (68 kg) and about 13 percent body fat. I think I am a bit closer to the camera on the right, so the photos are not exactly on the same scale. For a more recent transformation update, see this post.
My lipids improved from borderline bad to fairly good numbers, as one would expect, but the two main changes that I noticed were in terms of illnesses and energy levels. I have not had a fever in a long time. I simply cannot remember when it was the last time that I had to stay in bed because of an illness. I only remember that I was fat then. Also, I used to feel a lot more tired when I was fat. Now I seem to have a lot of energy, almost all the time.
In my estimation, I was obese or overweight for about 10 years, and was rather careless about it. A lot of that time I weighed in the 190s; with a peak weight of 210 lbs. Given that, I consider myself lucky not to have had major health problems by now, like diabetes or cancer. A friend of mine who is a doctor told me that I probably had some protection due to the fact that, when I was fat, I was fat everywhere. My legs, for example, were fat. So were my arms and face. In other words, I lot of the fat was subcutaneous, and reasonably distributed. In fact, most people do not believe me when I say that I weighed 210 lbs when that photo was taken in 2006; but maybe they are just trying to be nice.
If you are not obese, you should do everything you can to avoid reaching that point. Among other things, your chances of having cancer will skyrocket.
So, I lost a whopping 60 lbs (27 kg) over about 2-3 years. That is not so radical; about 1.6-2.5 lbs per month. There were plateaus with no weight loss, and even a few periods with weight gain. Perhaps because of that and the slow weight loss, I had none of the problems usually associated with body responses to severe calorie restriction, such as hypothyroidism. I remember a short period when I felt a little weak and miserable; I was doing exercise after long fasts (20 h or so), and not eating enough afterwards. I did that for a couple of weeks and decided against the idea.
There are no shortcuts with body fat loss, it seems. Push it too hard and the body will react; compensatory adaptation at work.
My weight has been stable, at around 150 lbs, for a little less than 2 years now.
What did I do to lose 60 lbs? I did a number of things at different points in time. I measured various variables (e.g., intake of macronutrients, weight, body fat, HDL cholesterol etc.) and calculated associations, using a prototype version of HealthCorrelator for Excel (HCE). Based on all that, I am pretty much convinced that the main factors were the following:
- Complete removal of foods rich in refined carbohydrates and sugars from my diet, plus almost complete removal of plant foods that I cannot eat raw. (I do cook some plant foods, but avoid the ones I cannot eat raw; with a few exceptions like sweet potato.) That excluded most seeds and grains from my diet, since they can only be eaten after cooking.
- Complete removal of vegetable oils rich in omega-6 fats from my diet. I cook primarily with butter and organic coconut oil. I occasionally use olive oil, often with water, for steam cooking.
- Consumption of plenty of animal products, with emphasis on eating the animal whole. All cooked. This includes small fish (sardines and smelts) eaten whole about twice a week, and offal (usually beef liver) about once or twice a week. I also eat eggs, about 3-5 per day.
- Practice of moderate exercise (2-3 sessions a week) with a focus on resistance training and high-intensity interval training (e.g., sprints). Also becoming more active, which does not necessarily mean exercising but doing things that involve physical motion of some kind (e.g., walking, climbing stairs, moving things around), to the tune of 1 hour or more every day.
- Adoption of more natural eating patterns; by eating more when I am hungry, usually on days I exercise, and less (including fasting) when I am not hungry. I estimate that this leads to a caloric surplus on days that I exercise, and a caloric deficit on days that I do not (without actually controlling caloric intake).
- A few minutes (15-20 min) of direct skin exposure to sunlight almost every day, when the sun is high, to get enough of the all-important vitamin D. This is pre-sunburn exposure, usually in my backyard. When traveling I try to find a place where people jog, and walk shirtless for 15-20 min.
- Stress management, including some meditation and power napping.
- Face-to-face social interaction, in addition to online interaction. Humans are social animals, and face-to-face social interaction contributes to promoting the right hormonal balance.
When I was fat, my appetite was a bit off. I was hungry at the wrong times, it seemed. Then slowly, after a few months eating essentially whole foods, my hunger seemed to start “acting normally”. That is, my hunger slowly fell into a pattern of increasing after physical exertion, and decreasing with rest. Protein and fat are satiating, but so seem to be fruits and vegetables. Never satiating for me were foods rich in refined carbohydrates and sugars – white bread, bagels, doughnuts, pasta etc.
Looking back, it almost seems too easy. Whole foods taste very good, especially if you are hungry.
But I will never want to each a peach after I have a doughnut. The peach will be tasteless!
My lipids improved from borderline bad to fairly good numbers, as one would expect, but the two main changes that I noticed were in terms of illnesses and energy levels. I have not had a fever in a long time. I simply cannot remember when it was the last time that I had to stay in bed because of an illness. I only remember that I was fat then. Also, I used to feel a lot more tired when I was fat. Now I seem to have a lot of energy, almost all the time.
In my estimation, I was obese or overweight for about 10 years, and was rather careless about it. A lot of that time I weighed in the 190s; with a peak weight of 210 lbs. Given that, I consider myself lucky not to have had major health problems by now, like diabetes or cancer. A friend of mine who is a doctor told me that I probably had some protection due to the fact that, when I was fat, I was fat everywhere. My legs, for example, were fat. So were my arms and face. In other words, I lot of the fat was subcutaneous, and reasonably distributed. In fact, most people do not believe me when I say that I weighed 210 lbs when that photo was taken in 2006; but maybe they are just trying to be nice.
If you are not obese, you should do everything you can to avoid reaching that point. Among other things, your chances of having cancer will skyrocket.
So, I lost a whopping 60 lbs (27 kg) over about 2-3 years. That is not so radical; about 1.6-2.5 lbs per month. There were plateaus with no weight loss, and even a few periods with weight gain. Perhaps because of that and the slow weight loss, I had none of the problems usually associated with body responses to severe calorie restriction, such as hypothyroidism. I remember a short period when I felt a little weak and miserable; I was doing exercise after long fasts (20 h or so), and not eating enough afterwards. I did that for a couple of weeks and decided against the idea.
There are no shortcuts with body fat loss, it seems. Push it too hard and the body will react; compensatory adaptation at work.
My weight has been stable, at around 150 lbs, for a little less than 2 years now.
What did I do to lose 60 lbs? I did a number of things at different points in time. I measured various variables (e.g., intake of macronutrients, weight, body fat, HDL cholesterol etc.) and calculated associations, using a prototype version of HealthCorrelator for Excel (HCE). Based on all that, I am pretty much convinced that the main factors were the following:
- Complete removal of foods rich in refined carbohydrates and sugars from my diet, plus almost complete removal of plant foods that I cannot eat raw. (I do cook some plant foods, but avoid the ones I cannot eat raw; with a few exceptions like sweet potato.) That excluded most seeds and grains from my diet, since they can only be eaten after cooking.
- Complete removal of vegetable oils rich in omega-6 fats from my diet. I cook primarily with butter and organic coconut oil. I occasionally use olive oil, often with water, for steam cooking.
- Consumption of plenty of animal products, with emphasis on eating the animal whole. All cooked. This includes small fish (sardines and smelts) eaten whole about twice a week, and offal (usually beef liver) about once or twice a week. I also eat eggs, about 3-5 per day.
- Practice of moderate exercise (2-3 sessions a week) with a focus on resistance training and high-intensity interval training (e.g., sprints). Also becoming more active, which does not necessarily mean exercising but doing things that involve physical motion of some kind (e.g., walking, climbing stairs, moving things around), to the tune of 1 hour or more every day.
- Adoption of more natural eating patterns; by eating more when I am hungry, usually on days I exercise, and less (including fasting) when I am not hungry. I estimate that this leads to a caloric surplus on days that I exercise, and a caloric deficit on days that I do not (without actually controlling caloric intake).
- A few minutes (15-20 min) of direct skin exposure to sunlight almost every day, when the sun is high, to get enough of the all-important vitamin D. This is pre-sunburn exposure, usually in my backyard. When traveling I try to find a place where people jog, and walk shirtless for 15-20 min.
- Stress management, including some meditation and power napping.
- Face-to-face social interaction, in addition to online interaction. Humans are social animals, and face-to-face social interaction contributes to promoting the right hormonal balance.
When I was fat, my appetite was a bit off. I was hungry at the wrong times, it seemed. Then slowly, after a few months eating essentially whole foods, my hunger seemed to start “acting normally”. That is, my hunger slowly fell into a pattern of increasing after physical exertion, and decreasing with rest. Protein and fat are satiating, but so seem to be fruits and vegetables. Never satiating for me were foods rich in refined carbohydrates and sugars – white bread, bagels, doughnuts, pasta etc.
Looking back, it almost seems too easy. Whole foods taste very good, especially if you are hungry.
But I will never want to each a peach after I have a doughnut. The peach will be tasteless!
Tuesday, July 13, 2010
Free running and primal workouts: Both look awesome, and dangerous
The other day I showed a YouTube MovNat video clip to one of my sons, noting the serious fitness of Erwan Le Corre. I also noted that the stunts were somewhat dangerous, and that they tried to replicate some of the movements that our Paleolithic ancestors had to do on a regular basis. That is, those movements are part of what one could call a primal workout.
My son looked at me and laughed, as if asking me if I was really being serious. Why? Well, he is into breakdancing (a.k.a. b-boying), and also does a bit of something called "free running". If you don’t know what free running is, take a look at this Wikipedia article.
Here are a couple of YouTube video clips on free running: clip 1, and clip 2. The moves do look a lot more hardcore than the ones on the MovNat video clip. (The reason for my son's reaction.) But, to be fair, the environments and goals are different. And, in terms of danger, some of these free running moves are really at the high end of the scale.
And, if you are interested, here are a couple of instructional YouTube video clips prepared by my sons: this one by my oldest, and this by my second oldest. (We have four children.) I have been telling them to be careful with those “airchairs” – the moves where all the weight is placed on one hand. It just looks like too much pressure on the joints of one single arm.
Two of the things that I like the most about primal workouts like the MovNat ones are the variety of movements, and the proximity to nature. Those two elements can potentially help with sticking to an exercise program in the long run, which is what matters most. Most people get very bored of exercising after a few months. Free running seems to be more competitive, and more dangerous.
Both free running and primal workouts are practiced by some people as their main form of exercise. In those cases, they appear to lead to body types that are similar to those of the hunter-gatherers on this post. I cannot help but notice that those body types are more like that of a sprinter than that of a typical bodybuilder.
The feats that those body types enable are feats of relative, not absolute, strength. This makes sense, as our Paleolithic ancestors were too smart to hunt prey or fight off predators (or even each other) with their bare hands. Spears and stones were formidable weapons. Paleolithic ancestors who were very adept at using weapons would probably be like skilled gunfighters in the American Old West – menacing, with the advantage of being able to use their skills to feed themselves and others.
Being lean, strong, and agile – all at the same time – arguably was one of the keys to survival in the Paleolithic.
My son looked at me and laughed, as if asking me if I was really being serious. Why? Well, he is into breakdancing (a.k.a. b-boying), and also does a bit of something called "free running". If you don’t know what free running is, take a look at this Wikipedia article.
Here are a couple of YouTube video clips on free running: clip 1, and clip 2. The moves do look a lot more hardcore than the ones on the MovNat video clip. (The reason for my son's reaction.) But, to be fair, the environments and goals are different. And, in terms of danger, some of these free running moves are really at the high end of the scale.
And, if you are interested, here are a couple of instructional YouTube video clips prepared by my sons: this one by my oldest, and this by my second oldest. (We have four children.) I have been telling them to be careful with those “airchairs” – the moves where all the weight is placed on one hand. It just looks like too much pressure on the joints of one single arm.
Two of the things that I like the most about primal workouts like the MovNat ones are the variety of movements, and the proximity to nature. Those two elements can potentially help with sticking to an exercise program in the long run, which is what matters most. Most people get very bored of exercising after a few months. Free running seems to be more competitive, and more dangerous.
Both free running and primal workouts are practiced by some people as their main form of exercise. In those cases, they appear to lead to body types that are similar to those of the hunter-gatherers on this post. I cannot help but notice that those body types are more like that of a sprinter than that of a typical bodybuilder.
The feats that those body types enable are feats of relative, not absolute, strength. This makes sense, as our Paleolithic ancestors were too smart to hunt prey or fight off predators (or even each other) with their bare hands. Spears and stones were formidable weapons. Paleolithic ancestors who were very adept at using weapons would probably be like skilled gunfighters in the American Old West – menacing, with the advantage of being able to use their skills to feed themselves and others.
Being lean, strong, and agile – all at the same time – arguably was one of the keys to survival in the Paleolithic.
Saturday, July 3, 2010
Power napping, stress management, and jet lag
Many animals take naps during the day. Our ancestors probably napped during the day too. They certainly did not spend as many hours as we do under mental stress. In fact, the lives of our Paleolithic ancestors would look quite boring to a modern human. Mental stress can be seen as a modern poison. We need antidotes for that poison. Power napping seems to be one of them.
Power napping is a topic that I have done some research on, but unfortunately I do not have access to the references right now. I am posting this from Europe, where I arrived a few days ago. Thus I am labeling this post “my experience”. Hopefully I will be able to write a more research-heavy post on this topic in the near future. I am pretty sure that there is a strong connection between power napping and stress hormones. Maybe our regular and knowledgeable commenters can help me fill this gap in their comments on this post.
Surprisingly, jet lag has been only very minor this time for me. The time difference between most of Europe and Texas is about 8 hours, which makes adaptation very difficult, especially coming over to Europe. In spite of that, I slept during much of my first night here. The same happened in the following nights, even though I can feel that my body is still not fully adapted to the new time zone.
How come? I am all but sure that this is a direct result of my recent experience with power napping.
I have been practicing power napping for several months now. Usually in the middle of the afternoon, between 3 and 4 pm, I lie down for about 15 minutes in a sleeping position on a yoga mat. I use a pillow for the head. I close my eyes and try to clear my mind of all thoughts, focusing on my breathing, as in meditation. When I feel like I am about to enter deep sleep, I get up. This usually happens 15 minutes after I lie down. The sign that I am about to enter deep sleep is having incoherent thoughts, like in dreaming. Often I have muscle jerks, called hypnic jerks, which are perfectly normal. Hypnic jerks are also a sign that it is time for me to get up.
After getting up I always feel very refreshed and relaxed. My ability to do intellectual work is also significantly improved. If I make the mistake of going further, and actually entering a deep sleep stage, I get up feeling very groggy and sleepy. So the power nap has to end at around 15 minutes for me. For most people, this time ranges from 10 to 20 minutes. It seems that once one enters a deep sleep phase, it is better to then sleep for at least a few hours.
Power napping is not as easy as it sounds. If one cannot enter a state of meditation at the beginning, the onset of sleep does not happen. You have to be able to clear your mind of thoughts. Focusing on your breathing helps. Interestingly, once you become experienced at power napping, you can then induce actual sleep in almost any situation – e.g., on a flight or when you arrive in another country. That is what happened with me during this trip. Even though I have been waking up at night since I arrived in Europe, I have been managing to go right back to sleep. Previously, in other trips to Europe, I would be unable to go back to sleep after I woke up in the middle of the night.
Power napping seems to also be an effective tool for stress management. In our busy modern lives, with many daily stressors, it is common for significant mental stress to set in around 8 to 9 hours after one wakes up in the morning. For someone waking up at 7 am, this will be about 3 to 4 pm in the afternoon. Power napping, when done right, seems to be very effective at relieving that type of stress.
(Source: Squidoo.com)
Power napping is a topic that I have done some research on, but unfortunately I do not have access to the references right now. I am posting this from Europe, where I arrived a few days ago. Thus I am labeling this post “my experience”. Hopefully I will be able to write a more research-heavy post on this topic in the near future. I am pretty sure that there is a strong connection between power napping and stress hormones. Maybe our regular and knowledgeable commenters can help me fill this gap in their comments on this post.
Surprisingly, jet lag has been only very minor this time for me. The time difference between most of Europe and Texas is about 8 hours, which makes adaptation very difficult, especially coming over to Europe. In spite of that, I slept during much of my first night here. The same happened in the following nights, even though I can feel that my body is still not fully adapted to the new time zone.
How come? I am all but sure that this is a direct result of my recent experience with power napping.
I have been practicing power napping for several months now. Usually in the middle of the afternoon, between 3 and 4 pm, I lie down for about 15 minutes in a sleeping position on a yoga mat. I use a pillow for the head. I close my eyes and try to clear my mind of all thoughts, focusing on my breathing, as in meditation. When I feel like I am about to enter deep sleep, I get up. This usually happens 15 minutes after I lie down. The sign that I am about to enter deep sleep is having incoherent thoughts, like in dreaming. Often I have muscle jerks, called hypnic jerks, which are perfectly normal. Hypnic jerks are also a sign that it is time for me to get up.
After getting up I always feel very refreshed and relaxed. My ability to do intellectual work is also significantly improved. If I make the mistake of going further, and actually entering a deep sleep stage, I get up feeling very groggy and sleepy. So the power nap has to end at around 15 minutes for me. For most people, this time ranges from 10 to 20 minutes. It seems that once one enters a deep sleep phase, it is better to then sleep for at least a few hours.
Power napping is not as easy as it sounds. If one cannot enter a state of meditation at the beginning, the onset of sleep does not happen. You have to be able to clear your mind of thoughts. Focusing on your breathing helps. Interestingly, once you become experienced at power napping, you can then induce actual sleep in almost any situation – e.g., on a flight or when you arrive in another country. That is what happened with me during this trip. Even though I have been waking up at night since I arrived in Europe, I have been managing to go right back to sleep. Previously, in other trips to Europe, I would be unable to go back to sleep after I woke up in the middle of the night.
Power napping seems to also be an effective tool for stress management. In our busy modern lives, with many daily stressors, it is common for significant mental stress to set in around 8 to 9 hours after one wakes up in the morning. For someone waking up at 7 am, this will be about 3 to 4 pm in the afternoon. Power napping, when done right, seems to be very effective at relieving that type of stress.
Labels:
jet lag,
meditation,
my experience,
power napping,
stress
Subscribe to:
Posts (Atom)