Thursday, December 30, 2010

How much protein does one need to be in nitrogen balance?

The figure below, from Brooks et al. (2005), shows a graph relating nitrogen balance and protein intake. A nitrogen balance of zero is a state in which body protein mass is stable; that is, it is neither increasing nor decreasing. The graph was taken from this classic study by Meredith et al. The participants in the study were endurance exercisers. As you can see, age is not much of a factor for nitrogen balance in this group.


Nitrogen balance is greater than zero (i.e., an anabolic state) for the vast majority of the participants at 1.2 g of protein per kg of body weight per day. To convert lbs to kg, divide by 2.2. A person weighing 100 lbs (45 kg) would need 55 g/d of protein; a person weighing 155 lbs (70 kg) would need 84 g/d; someone weighing 200 lbs (91 kg) would need 109 g/d.

The above numbers are overestimations of the amounts needed by people not doing endurance exercise, because endurance exercise tends to lead to muscle loss more than rest or moderate strength training. One way to understand this is compensatory adaptation; the body adapts to endurance exercise by shedding off muscle, as muscle is more of a hindrance than an asset for this type of exercise.

Total calorie intake has a dramatic effect on protein requirements. The above numbers assume that a person is getting just enough calories from other sources to meet daily caloric needs. If a person is in caloric deficit, protein requirements go up. If in caloric surplus, protein requirements go down. Other factors that increase protein requirements are stress and wasting diseases (e.g., cancer).

But what if you want to gain muscle?

Wilson & Wilson (2006) conducted an extensive review of the literature on protein intake and nitrogen balance. That review suggests that a protein intake beyond 25 percent of what is necessary to achieve a nitrogen balance of zero would have no effect on muscle gain. That would be 69 g/d for a person weighing 100 lbs (45 kg); 105 g/d for a person weighing 155 lbs (70 kg); and 136 g/d for someone weighing 200 lbs (91 kg). For the reasons explained above, these are also overestimations.

What if you go well beyond these numbers?

The excess protein will be used primarily as fuel; that is, it will be oxidized. In fact, a large proportion of all the protein consumed on a daily basis is used as fuel, and does not become muscle. This happens even if you are a gifted bodybuilder that can add 1 lb of protein to muscle tissue per month. So excess protein can make you gain body fat, but not by protein becoming body fat.

Dietary protein does not normally become body fat, but will typically be used in place of dietary fat as fuel. This will allow dietary fat to be stored. Dietary protein also leads to an insulin response, which causes less body fat to be released. In this sense, protein has a fat-sparing effect, preventing it from being used to supply the energy needs of the body. As long as it is available, dietary protein will be favored over dietary or body fat as a fuel source.

Having said that, if you were to overeat anything, the best choice would be protein, in the absence of any disease that would be aggravated by this. Why? Protein contributes fewer calories per gram than carbohydrates; many fewer when compared with dietary fat. Unlike carbohydrates or fat, protein almost never becomes body fat under normal circumstances. Dietary fat is very easily converted to body fat; and carbohydrates become body fat when glycogen stores are full. Finally, protein seems to be the most satiating of all macronutrients, perhaps because natural protein-rich foods are also very nutrient-dense.

It is not very easy to eat a lot of protein without getting also a lot of fat if you get your protein from natural foods; as opposed to things like refined seed/grain products or protein supplements. Exceptions are organ meats and seafood, which generally tend to be quite lean and protein-rich.

References

Brooks, G.A., Fahey, T.D., & Baldwin, K.M. (2005). Exercise physiology: Human bioenergetics and its applications. Boston, MA: McGraw-Hill.

Wilson, J., & Wilson, G.J. (2006). Contemporary issues in protein requirements and consumption for resistance trained athletes. Journal of the International Society of Sports Nutrition, 3(1), 7-27.

Tuesday, December 28, 2010

How much dietary protein can you store in muscle? About 15 g/d if you are a gifted bodybuilder

Let us say you are one of the gifted few who are able to put on 1 lb of pure muscle per month, or 12 lbs per year, by combining strength training with a reasonable protein intake. Let us go even further and assume that the 1 lb of muscle that we are talking about is due to muscle protein gain, not glycogen or water. This is very uncommon; one has to really be genetically gifted to achieve that.

And you do that by eating a measly 80 g of protein per day. That is little more than 0.5 g of protein per lb of body weight if you weigh 155 lbs; or 0.4 per lb if you weigh 200 lbs. At the end of the year you are much more muscular. People even think that you’ve been taking steroids; but that just came naturally. The figure below shows what happened with the 80 g of protein you consumed every day. About 15 g became muscle (that is 1 lb divided by 30) … and 65 g “disappeared”!


Is that an amazing feat? Yes, it is an amazing feat of waste, if you think that the primary role of protein is to build muscle. More than 80 percent of the protein consumed was used for something else, notably to keep your metabolic engine running.

A significant proportion of dietary protein also goes into the synthesis of albumin, to which free fatty acids bind in the blood. (Albumin is necessary for the proper use of fat as fuel.) Dietary protein is also used in the synthesis of various body tissues and hormones.

Dietary protein does not normally become body fat, but can be used in place of fat as fuel and thus allow more dietary fat to be stored. It leads to an insulin response, which causes less body fat to be released. In this sense, dietary protein has a fat-sparing effect, preventing it from being used to supply the energy needs of the body.

Nevertheless, the fat-sparing effect of protein is lower than that of another "macronutrient" – alcohol. That is, alcohol takes precedence over carbohydrates for use as fuel. However, protein takes precedence over carbohydrates. Neither alcohol nor protein typically becomes body fat. Carbohydrates can become body fat, but only when glycogen stores are full.

What does this mean?

As it turns out, a reasonably high protein intake seems to be quite healthy, and there is nothing wrong with the body using protein to feed its metabolism.

Having said that, one does not need enormous amounts of protein to keep or even build muscle if one is getting enough calories from other sources.

In my next post I’ll talk a little bit more about that.

Thursday, December 23, 2010

38 g of sardines or 2 fish oil softgels? Let us look at the numbers

The bar chart below shows the fat content of 1 sardine (38 g) canned in tomato sauce, and 2 fish oil softgels of the Nature Made brand. (The sardine is about 1/3 of the content of a typical can, and the data is from Nutritiondata.com. The two softgels are listed as the “serving size” on the Nature Made bottle.) Both the sardine and softgels have some vegetable oil added; presumably to increase their vitamin E content and form a more stable oil mix. This chart is a good reminder that looking at actual numbers can be quite instructive sometimes. Even though the chart focuses on fat content, it is worth noting that the 38 g sardine also contains 8 g of high quality protein.


If your goal with the fish oil is to “neutralize” the omega-6 fat content of your diet, which is most people’s main goal, you should consider this. A rough measure of the omega-6 neutralization “power” of a food portion is, by definition, its omega-3 minus omega-6 content. For the 1 canned sardine, this difference is 596 mg; for the 2 fish oil softgels, 440 mg. The reason is that the two softgels have more omega-6 than the sardine.

In case you are wondering, the canning process does not seem to have much of an effect on the nutrient composition of the sardine. There is some research suggesting that adding vegetable oil (e.g., soy) helps preserve the omega-3 content during the canning process. There is also research suggesting that not much is lost even without any vegetable oil being added.

Fish oil softgels, when taken in moderation (e.g., two of the type discussed in this post, per day), are probably okay as “neutralizers” of omega-6 fats in the diet, and sources of a minimum amount of omega-3 fats for those who do not like seafood. For those who can consume 1 canned sardine per day, which is only 1/3 of a typical can of sardines, the sardine is not only a more effective source of omega-3, but also a good source of protein and many other nutrients.

As far as balancing dietary omega-6 fats is concerned, you are much better off reducing your consumption of foods rich in omega-6 fats in the first place. Apparently nothing beats avoiding industrial seed oils in that respect. It is also advisable to eat certain types of nuts with high omega-6 content, like walnuts, in moderation.

Both omega-6 and omega-3 fats are essential; they must be part of one’s diet. The actual minimum required amounts are fairly small, probably much lower than the officially recommended amounts. Chances are they would be met by anyone on a balanced diet of whole foods. Too much of either type of fat in synthetic or industrialized form can cause problems. A couple of instructive posts on this topic are this post by Chris Masterjohn, and this one by Chris Kresser.

Even if you don’t like canned sardines, it is not much harder to gulp down 38 g of sardines than it is to gulp down 2 fish oil softgels. You can get the fish oil for $12 per bottle with 300 softgels; or 8 cents per serving. You can get a can of sardines for 50 cents; which gives 16.6 cents per serving. The sardine is twice as expensive, but carries a lot more nutritional value.

You can also buy wild caught sardines, like I do. I also eat canned sardines. Wild caught sardines cost about $2 per lb, and are among the least expensive fish variety. They are not difficult to prepare; see this post for a recipe.

I don’t know how many sardines go into the industrial process of making 2 fish oil softgels, but I suspect that it is more than one. So it is also probably more ecologically sound to eat the sardine.

Monday, December 20, 2010

Nuts by numbers: Should you eat them, and how much?

Nuts are generally seen as good sources of protein and magnesium. The latter plays a number of roles in the human body, and is considered critical for bone health. Nuts are also believed to be good sources of vitamin E. While there is a lot of debate about vitamin E’s role in health, it is considered by many to be a powerful antioxidant. Other than in nuts, vitamin E is not easily found in foods other than seeds and seed oils.

Some of the foods that we call nuts are actually seeds; others are legumes. For simplification, in this post I am calling nuts those foods that are generally protected by shells (some harder than others). This protective layer is what makes most people call them nuts.

Let us see how different nuts stack up against each other in terms of key nutrients. The quantities listed below are per 1 oz (28 g), and are based on data from Nutritiondata.com. All are raw. Roasting tends to reduce the vitamin content of nuts, often by half, and has little effect on the mineral content. Protein and fat content are also reduced, but not as much as the vitamin content.

These two figures show the protein, fat, and carbohydrate content of nuts (on the left); and the omega-6 and omega-3 fat content (on the right).


When we talk about nuts, walnuts are frequently presented in a very positive light. The reason normally given is that walnuts have a high omega-3 content; the plant form of omega-3, alpha-linolenic acid (ALA). That is true. But look at the large amount of omega-6 in walnuts. The difference between the omega-6 and omega-3 content in walnuts is about 8 g! And this is in only 1 oz of walnuts. That is 8 g of possibly pro-inflammatory omega-6 fats to be “neutralized”. It would take many fish oil softgels to achieve that.

Walnuts should be eaten in moderation. Most studies looking at the health effects of nuts, including walnuts, show positive results in short-term interventions. But they usually involve moderate consumption, often of 1 oz per day. Eat several ounces of walnuts every day, and you are entering industrial see oil territory in terms of omega-6 fats consumption. Maybe other nutrients in walnuts have protective effects, but still, this looks like dangerous territory; “diseases of civilization” territory.

A side note. Focusing too much on the omega-6 to omega-3 ratio of individual foods can be quite misleading. The reason is that a food with a very small amount of omega-6 (e.g., 50 mg) but close to zero omega-3 will have a very high ratio. (Any number divided by zero yields infinity.) Yet, that food will contribute little omega-6 to a person’s diet. It is the ratio at the end of the day that matters, when all foods that have been eaten are considered.

The figures below show the magnesium content of nuts (on the left); and the vitamin E content (on the right).


Let us say that you are looking for the best combination of protein, magnesium, and vitamin E. And you also want to limit your intake of omega-6 fats, which is a very wise thing to do. Then what is the best choice? It looks like it is almonds. And even they should be eaten in small amounts, as 1 oz has more than 3 g of omega-6 fats.

Macadamia nuts don’t have much omega-6; their fats are mostly monounsaturated, which are very good. Their protein to fat ratio is very low, and they don’t have much magnesium or vitamin E. Coconuts (i.e., their meat) have mostly medium-chain saturated fats, which are also very good. Coconuts have little protein, magnesium, and vitamin E. If you want to increase your intake of healthy fats, both macadamia nuts and coconuts are good choices, with macadamia nuts providing about 3 times more fat.

There are many other dietary sources of magnesium around. In fact, magnesium is found in many foods. Examples are, in approximate descending order of content: salmon, spinach, sardine, cod, halibut, banana, white potato, sweet potato, beef, chicken, pork, liver, and cabbage. This is by no means a comprehensive list.

As for vitamin E, it likes to hide in seeds. While it may be a powerful antioxidant, I wonder whether Mother Nature really had it “in mind” as she tinkered with our DNA for the last few million years.

Thursday, December 16, 2010

Maknig to mayn tipos? Myabe ur teh boz

Undoubtedly one of the big differences between life today and in our Paleolithic past is the level of stress that modern humans face on a daily basis. Much stress happens at work, which is very different from what our Paleolithic ancestors would call work. Modern office work, in particular, would probably be seen as a form of slavery by our Paleolithic ancestors.

Some recent research suggests that organizational power distance is a big factor in work-related stress. Power distance is essentially the degree to which bosses and subordinates accept wide differences in organizational power between them (Hofstede, 2001).

(Source: talentedapps.wordpress.com)

I have been studying the topic of information overload for a while. It is a fascinating topic. People who experience it have the impression that they have more information to process than they can handle. They also experience significant stress as a result of it, and both the quality of their work and their productivity goes down.

Recently some colleagues and I conducted a study that included employees from companies in New Zealand, Spain, and the USA (Kock, Del Aguila-Obra & Padilla-Meléndez, 2009). These are countries whose organizations typically display significant differences in power distance. We found something unexpected. Information overload was much more strongly associated with power distance than with the actual amount of information employees had to process on a daily basis.

While looking for explanations to this paradoxical finding, I recalled an interview I gave way back in 2001 to the Philadelphia Inquirer, commenting on research by Dr. David A. Owens. His research uncovered an interesting phenomenon. The higher up in the organizational pecking order one was, the less the person was concerned about typos on emails to subordinates.

There is also some cool research by Carlson & Davis (1998) suggesting that bosses tend to pick the communication media that are the most convenient for them, and don’t care much about convenience for the subordinates. One example would be calling a subordinate on the phone to assign a task, and then demanding a detailed follow-up report by email.

As a side note, writing a reasonably sized email takes a lot longer than conveying the same ideas over the phone or face-to-face (Kock, 2005). To be more precise, it takes about 10 times longer when the word count is over 250 and the ideas being conveyed are somewhat complex. For very short messages, a written medium like email is fairly convenient, and the amount of time to convey ideas may be even shorter than by using the phone or doing it face-to-face.

So a picture started to emerge. Bosses choose the communication media that are convenient for them when dealing with subordinates. If the media are written, they don’t care about typos at all. The subordinates use the media that are imposed on them, and if the media are written they certainly don’t want something with typos coming from them to reach their bosses. It would make them look bad.

The final result is this. Subordinates experience significant information overload, particularly in high power distance organizations. They also experience significant stress. Work quality and productivity goes down, and they get even more stressed. They get fat, or sickly thin. Their health deteriorates. Eventually they get fired, which doesn’t help a bit.

What should you do, if you are not the boss? Here are some suggestions:

- Try to tactfully avoid letting communication media being imposed on you all the time by your boss (and others). Explicitly state, in a polite way, the media that would be most convenient for you in various circusmtances, both as a receiver and sender. Generally, media that support oral speech are better for discussing complex ideas. Written media are better for short exchanges. Want an evolutionary reason for that? As you wish: Kock (2004).

- Discuss the ideas in this post with your boss; assuming that the person cares. Perhaps there is something that can be done to reduce power distance, for example. Making the work environment more democratic seems to help in some cases.

- And ... dot’n wrory soo mach aobut tipos ... which could be extrapolated to: don’t sweat the small stuff. Most bosses really care about results, and will gladly take an email with some typos telling them that a new customer signed a contract. They will not be as happy with an email telling them the opposite, no matter how well written it is.

Otherwise, your organizational demise may come sooner than you think.

References

Carlson, P.J., & Davis, G.B. (1998). An investigation of media selection among directors and managers: From "self" to "other" orientation. MIS Quarterly, 22(3), 335-362.

Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations. Thousand Oaks, CA: Sage.

Kock, N. (2004). The psychobiological model: Towards a new theory of computer-mediated communication based on Darwinian evolution. Organization Science, 15(3), 327-348.

Kock, N. (2005). Business process improvement through e-collaboration: Knowledge sharing through the use of virtual groups. Hershey, PA: Idea Group Publishing.

Kock, N., Del Aguila-Obra, A.R., & Padilla-Meléndez, A. (2009). The information overload paradox: A structural equation modeling analysis of data from New Zealand, Spain and the U.S.A. Journal of Global Information Management, 17(3), 1-17.

Monday, December 13, 2010

Calling the Sugar Plum Fairy Fat and Other Ways To End Up on the Naughty List!

Back in the mid 1990's I first began getting interested in public health. One of my first areas of interest was around eating disorders, especially among female athletes. Many of you may remember the book that sparked my interest, "Little Girls in Pretty Boxes".

This book focused on body weight/image pressures among female athletes in elite gymnastics and figure skating. The book is heartbreaking, following several athletes along paths of injury and disordered eating...many of which lead to permanent injury or death. Even though the book is almost 15 years old, I sometimes wonder if we've even learned anything from those stories.

On NBC's Today Show this morning, Jenifer Ringer was a guest. She is a New York City Ballet principal dancer, currently playing the Sugar Plum Fairy in The Nutcracker. Her name has been all over the blogosphere in the past week after a critic for The New York Times Dance Section wrote that "she looked as if she'd eaten one sugar plum too many".

In response to the outrage over his comments, the critic (Alastair Macaulay) published a second editorial five days later called "Judging the Bodies in Ballet". His primary argument- judging the body is fair game in ballet. "If you want to make your body irrelevant to criticism, do not choose ballet as a career". And I would assume that he would argue that the same goes for gymnastics or figure skating, where the body is actually part of the art form. But if that is true, how does the cycle of pressure and expectation ever get broken? Are you asking for criticism if you choose to participate in one of these sports?

In public health, we often make much more headway by changing laws/policies versus changing any one individual's opinion. In that spirit, there have been some systemic changes that have made these types of sports safer for young female athletes. For example, a minimum age limit for Olympic competition was enforced (even though some countries have cheated), hoping that it will help with wear and tear on young bodies that can not yet handle the intense training. Changes have been made to make the equipment safer. For example, after many serious injuries occurred on the women's vault in gymnastics, their pommel horse was replaced with a "vaulting table" that was more appropriately sized and padded.

So minimum ages and safer equipment are wonderful, but what will help with the unrealistic body image problem? In her Today Show interview, Jenifer shared that the New York City Ballet has all types of bodies on the roster, including hers that is more "womanly". I guess that's a good start. If ballet companies can model variety and acceptance and strength for their audiences (including aspiring ballerinas), that can begin to change perceptions of what is "normal". And the outrage shown by readers of the critic's comments. I guess that's a good start too.

Shame on you Mr. Macaulay for picking on the Sugar Plum Fairy.

What is a reasonable vitamin D level?

The figure and table below are from Vieth (1999); one of the most widely cited articles on vitamin D. The figure shows the gradual increase in blood concentrations of 25-Hydroxyvitamin, or 25(OH)D, following the start of daily vitamin D3 supplementation of 10,000 IU/day. The table shows the average levels for people living and/or working in sun-rich environments; vitamin D3 is produced by the skin based on sun exposure.


25(OH)D is also referred to as calcidiol. It is a pre-hormone that is produced by the liver based on vitamin D3. To convert from nmol/L to ng/mL, divide by 2.496. The figure suggests that levels start to plateau at around 1 month after the beginning of supplementation, reaching a point of saturation after 2-3 months. Without supplementation or sunlight exposure, levels should go down at a comparable rate. The maximum average level shown on the table is 163 nmol/L (65 ng/mL), and refers to a sample of lifeguards.

From the figure we can infer that people on average will plateau at approximately 130 nmol/L, after months of 10,000 IU/d supplementation. That is 52 ng/mL. Assuming a normal distribution with a standard deviation of about 20 percent of the range of average levels, we can expect about 68 percent of the population to be in the 42 to 63 ng/mL range.

This might be the range most of us should expect to be in at an intake of 10,000 IU/d. This is the equivalent to the body’s own natural production through sun exposure.

Approximately 32 percent of the population can be expected to be outside this range. A person who is two standard deviations (SDs) above the mean (i.e., average) would be at around 73 ng/mL. Three SDs above the mean would be 83 ng/mL. Two SDs below the mean would be 31 ng/mL.

There are other factors that may affect levels. For example, being overweight tends to reduce them. Excess cortisol production, from stress, may also reduce them.

Supplementing beyond 10,000 IU/d to reach levels much higher than those in the range of 42 to 63 ng/mL may not be optimal. Interestingly, one cannot overdose through sun exposure, and the idea that people do not produce vitamin D3 after 40 years of age is a myth.

One would be taking in about 14,000 IU/d of vitamin D3 by combining sun exposure with a supplemental dose of 4,000 IU/d. Clear signs of toxicity may not occur until one reaches 50,000 IU/d. Still, one may develop other complications, such as kidney stones, at levels significantly above 10,000 IU/d.

See this post by Chris Masterjohn, which makes a different argument, but with somewhat similar conclusions. Chris points out that there is a point of saturation above which the liver is unable to properly hydroxylate vitamin D3 to produce 25(OH)D.

How likely it is that a person will develop complications like kidney stones at levels above 10,000 IU/d, and what the danger threshold level could be, are hard to guess. Kidney stone incidence is a sensitive measure of possible problems; but it is, by itself, an unreliable measure. The reason is that it is caused by factors that are correlated with high levels of vitamin D, where those levels may not be the problem.

There is some evidence that kidney stones are associated with living in sunny regions. This is not, in my view, due to high levels of vitamin D3 production from sunlight. Kidney stones are also associated with chronic dehydration, and populations living in sunny regions may be at a higher than average risk of chronic dehydration. This is particularly true for sunny regions that are also very hot and/or dry.

Reference

Vieth, R. (1999). Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. American Journal of Clinical Nutrition, 69(5), 842-856.

Monday, December 6, 2010

Pressure-cooked meat: Top sirloin

Pressure cooking relies on physics to take advantage of the high temperatures of liquids and vapors in a sealed container. The sealed container is the pressure-cooking pan. Since the sealed container does not allow liquids or vapors to escape, the pressure inside the container increases as heat is applied to the pan. This also significantly increases the temperature of the liquids and vapors inside the container, which speeds up cooking.

Pressure cooking is essentially a version of high-heat steaming. The food inside the cooker tends to be very evenly cooked. Pressure cooking is also considered to be one of the most effective cooking methods for killing food-born pathogens. Since high pressure reduces cooking time, pressure cooking is usually employed in industrial food processing.

When cooking meat, the amount of pressure used tends to affect amino-acid digestibility; more pressure decreases digestibility. High pressures in the cooker cause high temperatures. The content of some vitamins in meat and plant foods is also affected; they go down as pressure goes up. Home pressure cookers are usually set at 15 pounds per square inch (psi). Significant losses in amino-acid digestibility occur only at pressures of 30 psi or higher.

My wife and I have been pressure-cooking for quite some time. Below is a simple recipe, for top sirloin.

- Prepare some dry seasoning powder by mixing sea salt, garlic power, chili powder, and a small amount of cayenne pepper.
- Season the top sirloin pieces at least 2 hours prior to placing them in the pressure cooking pan.
- Place the top sirloin pieces in the pressure cooking pan, and add water, almost to the point of covering them.
- Cook on very low fire, after the right amount of pressure is achieved, for 1 hour. The point at which the right amount of pressure is obtained is signaled by the valve at the top of the pan making a whistle-like noise.

As with slow cooking in an open pan, the water around the cuts should slowly turn into a fatty and delicious sauce, which you can pour on the meat when serving, to add flavor. The photos below show the seasoned top sirloin pieces, the (old) pressure-cooking pan we use, and some cooked pieces ready to be eaten together with some boiled yam.




A 100 g portion will have about 30 g of protein. (That is a bit less than 4 oz, cooked.) The amount of fat will depend on how trimmed the cuts are. Like most beef cuts, the fat will be primarily saturated and monounsatured, with approximately equal amounts of each. It will provide good amounts of the following vitamins and minerals: iron, magnesium, niacin, phosphorus, potassium, zinc, selenium, vitamin B6, and vitamin B12.

Thursday, December 2, 2010

How lean should one be?

Loss of muscle mass is associated with aging. It is also associated with the metabolic syndrome, together with excessive body fat gain. It is safe to assume that having low muscle and high fat mass, at the same time, is undesirable.

The extreme opposite of that, achievable though natural means, would be to have as much muscle as possible and as low body fat as possible. People who achieve that extreme often look a bit like “buff skeletons”.

This post assumes that increasing muscle mass through strength training and proper nutrition is healthy. It looks into body fat levels, specifically how low body fat would have to be for health to be maximized.

I am happy to acknowledge that quite often I am working on other things and then become interested in a topic that is brought up by Richard Nikoley, and discussed by his readers (I am one of them). This post is a good example of that.

Obesity and the diseases of civilization

Obesity is strongly associated with the diseases of civilization, of which the prototypical example is perhaps type 2 diabetes. So much so that sometimes the impression one gets is that without first becoming obese, one cannot develop any of the diseases of civilization.

But this is not really true. For example, diabetes type 1 is also one of the diseases of civilization, and it often strikes thin people. Diabetes type 1 results from the destruction of the beta cells in the pancreas by a person’s own immune system. The beta cells in the pancreas produce insulin, which regulates blood glucose levels.

Still, obesity is undeniably a major risk factor for the diseases of civilization. It seems reasonable to want to move away from it. But how much? How lean should one be to be as healthy as possible? Given the ubiquity of U-curve relationships among health variables, there should be a limit below which health starts deteriorating.

Is the level of body fat of the gentleman on the photo below (from: ufcbettingtoday.com) low enough? His name is Fedor; more on him below. I tend to admire people who excel in narrow fields, be they intellectual or sport-related, even if I do not do anything remotely similar in my spare time. I admire Fedor.


Let us look at some research and anecdotal evidence to see if we can answer the question above.

The buff skeleton look is often perceived as somewhat unattractive

Being in the minority is not being wrong, but should make one think. Like Richard Nikoley’s, my own perception of the physique of men and women is that, the leaner they are, the better; as long as they also have a reasonable amount of muscle. That is, in my mind, the look of a stage-ready competitive natural bodybuilder is close to the healthiest look possible.

The majority’s opinion, however, seems different, at least anecdotally. The majority of women that I hear or read voicing their opinions on this matter seem to find the “buff skeleton” look somewhat unattractive, compared with a more average fit or athletic look. The same seems to be true for perceptions of males about females.

A little side note. From an evolutionary perspective, perceptions of ancestral women about men must have been much more important than perceptions of ancestral men about women. The reason is that the ancestral women were the ones applying sexual selection pressures in our ancestral past.

For the sake of discussion, let us define the buff skeleton look as one of a reasonably muscular person with a very low body fat percentage; pretty much only essential fat. That would be 10-13 percent for women, and 5-8 percent for men.

The average fit look would be 21-24 percent for women, and 14-17 percent for men. Somewhere in between, would be what we could call the athletic look, namely 14-20 percent for women, and 6-13 percent for men. These levels are exactly the ones posted on this Wikipedia article on body fat percentages, at the time of writing.

From an evolutionary perspective, attractiveness to members of the opposite sex should be correlated with health. Unless we are talking about a costly trait used in sexual selection by our ancestors; something analogous to the male peacock’s train.

But costly traits are usually ornamental, and are often perceived as attractive even in exaggerated forms. What prevents male peacock trains from becoming the size of a mountain is that they also impair survival. Otherwise they would keep growing. The peahens find them sexy.

Being ripped is not always associated with better athletic performance

Then there is the argument that if you carried some extra fat around the waist, then you would not be able to fight, hunt etc. as effectively as you could if you were living 500,000 years ago. Evolution does not “like” that, so it is an unnatural and maladaptive state achieved by modern humans.

Well, certainly the sport of mixed martial arts (MMA) is not the best point of comparison for Paleolithic life, but it is not such a bad model either. Look at this photo of Fedor Emelianenko (on the left, clearly not so lean) next to Andrei Arlovski (fairly lean). Fedor is also the one on the photo at the beginning of this post.

Fedor weighed about 220 lbs at 6’; Arlovski 250 lbs at 6’4’’. In fact, Arlovski is one of the leanest and most muscular MMA heavyweights, and also one of the most highly ranked. Now look at Fedor in action (see this YouTube video), including what happened when Fedor fought Arlovski, at around the 4:28 mark. Fedor won by knockout.

Both Fedor and Arlovski are heavyweights; which means that they do not have to “make weight”. That is, they do not have to lose weight to abide by the regulations of their weight category. Since both are professional MMA fighters, among the very best in the world, the weight at which they compete is generally the weight that is associated with their best performance.

Fedor was practically unbeaten until recently, even though he faced a very high level of competition. Before Fedor there was another professional fighter that many thought was from Russia, and who ruled the MMA heavyweight scene for a while. His name is Igor Vovchanchyn, and he is from the Ukraine. At 5’8’’ and 230 lbs in his prime, he was a bit chubby. This YouTube video shows him in action; and it is brutal.

A BMI of about 25 seems to be the healthiest for long-term survival

Then we have this post by Stargazey, a blogger who likes science. Toward the end the post she discusses a study suggesting that a body mass index (BMI) of about 25 seems to be the healthiest for long-term survival. That BMI is between normal weight and overweight. The study suggests that both being underweight or obese is unhealthy, in terms of long-term survival.

The BMI is calculated as an individual’s body weight divided by the square of the individual’s height. A limitation of its use here is that the BMI is a more reliable proxy for body fat percentage for women than for men, and can be particularly misleading when applied to muscular men.

The traditional Okinawans are not super lean

The traditional Okinawans (here is a good YouTube video) are the longest living people in the world. Yet, they are not super lean, not even close. They are not obese either. The traditional Okinawans are those who kept to their traditional diet and lifestyle, which seems to be less and less common these days.

There are better videos on the web that could be used to illustrate this point. Some even showing shirtless traditional karate instructors and students from Okinawa, which I had seen before but could not find again. Nearly all of those karate instructors and students were a bit chubby, but not obese. By the way, karate was invented in Okinawa.

The fact that the traditional Okinawans are not ripped does not mean that the level of fat that is healthy for them is also healthy for someone with a different genetic makeup. It is important to remember that the traditional Okinawans share a common ancestry.

What does this all mean?

Some speculation below, but before that let me tell this: as counterintuitive as it may sound, excessive abdominal fat may be associated with higher insulin sensitivity in some cases. This post discusses a study in which the members of a treatment group were more insulin sensitive than the members of a control group, even though the former were much fatter; particularly in terms of abdominal fat.

It is possible that the buff skeleton look is often perceived as somewhat unattractive because of cultural reasons, and that it is associated with the healthiest state for humans. However, it seems a bit unlikely that this applies as a general rule to everybody.

Another possibility, which appears to be more reasonable, is that the buff skeleton look is healthy for some, and not for others. After all, body fat percentage, like fat distribution, seems to be strongly influenced by our genes. We can adapt in ways that go against genetic pressures, but that may be costly in some cases.

There is a great deal of genetic variation in the human species, and much of it may be due to relatively recent evolutionary pressures.

Life is not that simple!

References

Buss, D.M. (1995). The evolution of desire: Strategies of human mating. New York, NY: Basic Books.

Cartwright, J. (2000). Evolution and human behavior: Darwinian perspectives on human nature. Cambridge, MA: The MIT Press.

Miller, G.F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York, NY: Doubleday.

Zahavi, A. & Zahavi, A. (1997). The Handicap Principle: A missing piece of Darwin’s puzzle. Oxford, England: Oxford University Press.

Wednesday, December 1, 2010

In Honor of World AIDS Day: Can Celebrity "Digital Deaths" Prevent Real Deaths from HIV/AIDS?

Kim Kardashian, Ryan Seacrest, and Lady Gaga are all dead! No, not really...but they are considered "Digitally Dead" for today- World AIDS Day (December 1st). These celebrities and many more joined forces with a charity co-founded by singer Alicia Keys called Keep a Child Alive. The charity provides treatment, love, and support to families affected by HIV/AIDS.

For today's campaign, celebs were pictured in coffins, featured in "last video testaments", and pledging to stay digitally silent on their social media accounts (i.e., on Facebook and Twitter) until their lives were "bought back" by donors reaching a minimum of one million dollars total. Although the images of celebs in coffins were a little creepy, Keep a Child Alive co-founder Leigh Blake says:

"We're trying to sort of make the remark: Why do we care so much about the death of one celebrity as opposed to millions and millions of people dying in the place that we're all from? Its about love and respect and human dignity."

It is an interesting concept for a health communication/advocacy campaign. Usually when campaigns advocate via social media, it is done by bombarding their followers with messages and links to donate or sign up to assist the cause. Here, the campaign is trying to motivate donors by having an ABSENCE of the celebrities' voices. How powerful is that absence? Will the public really miss reading celebs tweets and facebook status updates? Apparently so. As of tonight on Twitter, Kim Kardashian had 5,467,107 followers and Ryan Seacrest had 3,683,658 followers. So whether we like it or not, the voices (and silences) of these celebrities matter in our communities.

While I do think the campaign will have large reach, I will say that their coffin posters left room for improvement. I've analyzed health communication campaigns on this blog before, and the key is always- "What is the cue to action? Does the audience know what they are supposed to do after seeing the poster/brochure/PSA?" Well- when I first saw this poster of Kim Kardashian, I had no idea what it was about. I had to Google and read the narrative about the World AIDS Day campaign for Keep A Child Alive. For this blog post, I had to blow the image up over 100% to read the text on the bottom of the poster. It reads,

"Kim sacrificed her digital life to give real life to millions of others affected by HIV/AIDS in Africa and India. That means no more Facebook or Twitter until we buy her life back". Then the charity website and text number were provided to accept donations. In future campaigns, they would want that text to be much bigger. It should not take the audience several minutes, a Google search, and a magnifying glass to figure out what they are supposed to do to help poor Kim get out of that coffin.

Overall, I give this campaign a B+ for creativity in using the "absence" of social media messages and targeting celebrities with a huge following and reach to potential donors.

Sunday, November 28, 2010

HealthCorrelator for Excel 1.0 (HCE): Call for beta testers

This call is closed. Beta testing has been successfully completed. HealthCorrelator for Excel (HCE) is now publicly available for download and use on a free trial basis. For those users who decide to buy it after trying, licenses are available for individuals and organizations.

To download a free trial version – as well as get the User Manual, view demo YouTube videos, and download and try sample datasets – visit the HealthCorrelator.com web site.

Tuesday, November 23, 2010

Text Messages and Public Health: Can They Remove Barriers for "Calling" 9-1-1?

Text messages are a great time saver. You do not have to have a long conversation with someone...instead you can just send a quick message like "I made it home safe!" or "Can you pick up milk on your way home?" These text messages work well to support our busy lives, but can they also be incorporated into effective public health interventions and systems?

This week, the Federal Communications Commission (FCC) announced that it is looking into letting citizens report crimes via text message. An article posted by Wired discusses the possibility and highlights some of the "barriers" that this new strategy could help to address. First and foremost, it could allow citizens to report a crime without being overheard if they were in dangerous situations (e.g., kidnapping, robbery). The FCC specifically pointed to the 2007 shootings at VirginiaTech and reported that texts could have allowed emergency personnel to respond more quickly and with a better understanding of the circumstances inside the campus buildings.

While at first glance, it may seem surprising to use text messaging for 9-1-1 reporting (due to potential logistical considerations and challenges), it would not be the first time that texts were being integrated into public health interventions and emergency response systems. For example:

  • Text messages are used to disseminate key health messages to various priority populations. E.g., The Text4Baby campaign allows mothers to self select into their program by texting "Baby" to the program number. The mothers then receive weekly text messages (timed to their due date or baby's birth day) regarding key health issues for their babies (e.g., nutrition, immunizations, etc).
  • Many workplaces and college campuses have signed up for emergency response systems that will send out automatic alerts to email and phones (via text message) during a crisis (e.g., shooter on site).
In the case of using text messages for "calling" 9-1-1, I wonder about how texts could influence a well documented social psychology barrier to calling for help. Those of you that took a social psychology course in college may remember the name "Kitty Genovese". She was a woman who was murdered outside her home in Queens, NY in 1964. At least one dozen people heard or observed her attack (lasting approximately 30 minutes), but there was much delay in anyone calling for help. A NY Times article running two weeks after her death was entitled, "Thirty-Eight Who Saw Murder Didn't Call Police". This case is widely discussed as an example of the "Bystander Effect", which is used to explain why many people do not help in emergency situations when others are present. Some hypotheses about the effect are that we just do what others are doing (i.e., nothing to help), we assume someone else is already calling/helping, or we assume that others are more qualified to help. Perhaps it is also too much trouble to call 9-1-1? They require a lot of information, we have to stay on the phone, etc. Perhaps a more "passive" option to report the information (like text messaging) would decrease resistance and the bystander effect?

In addition to the great potential with this strategy, there are also several barriers that must be addressed in the planning:
  • Costs (equipment, training, staffing)
  • Regulation and Oversight: Will text message support be required or voluntary at emergency centers? Who will conduct a formative and ongoing evaluation of the system?
  • Interpretation of messages: Operators will need special training to (quickly) interpret and respond to text messages. Texts are often written in short hand, so you would need someone very skilled to decipher them accurately. It may also be time consuming to support the texting back and forth that may be required to receive all relevant information from the "caller" in order to dispatch an appropriate response.
Even with the barriers noted above, it does seem like text messages are a viable option to consider in order to increase timely and safe 9-1-1 reporting. However, the 9-1-1 system will need to think critically to develop the type of infrastructure that can keep up with our ever changing and expanding communication technology.

Monday, November 22, 2010

Human traits are distributed along bell curves: You need to know yourself, and HCE can help

Most human traits (e.g., body fat percentage, blood pressure, propensity toward depression) are influenced by our genes; some more than others. The vast majority of traits are also influenced by environmental factors, the “nurture” part of the “nature-nurture” equation. Very few traits are “innate”, such as blood type.

This means that manipulating environmental factors, such as diet and lifestyle, can strongly influence how the traits are finally expressed in humans. But each individual tends to respond differently to diet and lifestyle changes, because each individual is unique in terms of his or her combination of “nature” and “nurture”. Even identical twins are different in that respect.

When plotted, traits that are influenced by our genes are distributed along a bell-shaped curve. For example, a trait like body fat percentage, when measured in a population of 1000 individuals, will yield a distribution of values that will look like a bell-shaped distribution. This type of distribution is also known in statistics as a “normal” distribution.

Why is that?

The additive effect of genes and the bell curve

The reason is purely mathematical. A measurable trait, like body fat percentage, is usually influenced by several genes. (Sometimes individual genes have a very marked effect, as in genes that “switch on or off” other genes.) Those genes appear at random in a population, and their various combinations spread in response to selection pressures. Selection pressures usually cause a narrowing of the bell-shaped curve distributions of traits in populations.

The genes interact with environmental influences, which also have a certain degree of randomness. The result is a massive combined randomness. It is this massive randomness that leads to the bell-curve distribution. The bell curve itself is not random at all, which is a fascinating aspect of this phenomenon. From “chaos” comes “order”. A bell curve is a well-defined curve that is associated with a function, the probability density function.

The underlying mathematical reason for the bell shape is the central limit theorem. The genes are combined in different individuals as combinations of alleles, where each allele is a variation (or mutation) of a gene. An allele set, for genes in different locations of the human DNA, forms a particular allele combination, called a genotype. The alleles combine their effects, usually in an additive fashion, to influence a trait.

Here is a simple illustration. Let us say one generates 1000 random variables, each storing 10 random values going from 0 to 1. Then the values stored in each of the 1000 random variables are added. This mimics the additive effect of 10 genes with random allele combinations. The result are numbers ranging from 1 to 10, in a population of 1000 individuals; each number is analogous to an allele combination. The resulting histogram, which plots the frequency of each allele combination (or genotype) in the population, is shown on the figure bellow. Each allele configuration will “push for” a particular trait range, making the trait distribution also have the same bell-shaped form.


The bell curve, research studies, and what they mean for you

Studies of the effects of diet and exercise on health variables usually report their results in terms of average responses in a group of participants. Frequently two groups are used, one control and one treatment. For example, in a diet-related study the control group may follow the Standard American Diet, and the treatment group may follow a low carbohydrate diet.

However, you are not the average person; the average person is an abstraction. Research on bell curve distributions tells us that there is about a 68 percentage chance that you will fall within a 1 standard deviation from the average, to the left or the right of the “middle” of the bell curve. Still, even a 0.5 standard deviation above the average is not the average. And, there is approximately a 32 percent chance that you will not be within the larger -1 to 1 standard deviation range. If this is the case, the average results reported may be close to irrelevant for you.

Average results reported in studies are a good starting point for people who are similar to the studies’ participants. But you need to generate your own data, with the goal of “knowing yourself through numbers” by progressively analyzing it. This is akin to building a “numeric diary”. It is not exactly an “N=1” experiment, as some like to say, because you can generate multiple data points (e.g., N=200) on how your body alone responds to diet and lifestyle changes over time.

HealthCorrelator for Excel (HCE)

I think I have finally been able to develop a software tool that can help people do that. I have been using it myself for years, initially as a prototype. You can see the results of my transformation on this post. The challenge for me was to generate a tool that was simple enough to use, and yet powerful enough to give people good insights on what is going on with their body.

The software tool is called HealthCorrelator for Excel (HCE). It runs on Excel, and generates coefficients of association (correlations, which range from -1 to 1) among variables and graphs at the click of a button.

This 5-minute YouTube video shows how the software works in general, and this 10-minute video goes into more detail on how the software can be used to manage a specific health variable. These two videos build on a very small sample dataset, and their focus is on HDL cholesterol management. Nevertheless, the software can be used in the management of just about any health-related variable – e.g., blood glucose, triglycerides, muscle strength, muscle mass, depression episodes etc.

You have to enter data about yourself, and then the software will generate coefficients of association and graphs at the click of a button. As you can see from the videos above, it is very simple. The interpretation of the results is straightforward in most cases, and a bit more complicated in a smaller number of cases. Some results will probably surprise users, and their doctors.

For example, a user who is a patient may be able to show to a doctor that, in the user’s specific case, a diet change influences a particular variable (e.g., triglycerides) much more strongly than a prescription drug or a supplement. More posts will be coming in the future on this blog about these and other related issues.

Monday, November 15, 2010

No Matter How Graphic The Images, Fear Based Messages Will Continue To Be Ineffective For Prevention

All over the news in the past week, we have seen samples of the new graphic images being proposed for addition to cigarette packages. They include corpses and people dying of cancer. However, just because these images and warnings are larger and more graphic, does not mean that they will be effective in smoking prevention.

A story ran today on Boston.com called "Will graphic cigarette warnings help- or hurt?" Two experts in tobacco prevention are quoted regarding their concerns about the new images. Gregory Connelly of the Harvard School of Public Health points to the results coming from Canada after using similar images. Smokers there simply purchased sleeves to cover up the images on their cigarette packs. Also, the smoking rate did not go down. The second expert is a wonderful professor of mine from the Boston University School of Public Health, Dr. Michael Siegel. Dr. Siegel writes regularly regarding this topic on his blog, "The Rest of the Story: Tobacco Analysis and Commentary". In the Boston.com article, he states "I do not actually think it's going to have much of an impact". His argument- the images are too late. The smokers are seeing the images after they have already purchased cigarettes. And (drum roll please....) people already know smoking is bad for them.

As someone who grew up during the "This is your brain. This is your brain on drugs. Any questions?" era...I wonder why we have not made much progress since then? Numerous studies have shown that scare tactics (or fear appeals) are not effective for preventing or producing sustained reductions of Alcohol, Tobacco, or other Drug use among youth. In addition to the issues outlined above, there is another problem with the fear based approach:

Although the fear based messages may increase knowledge (e.g., if they did not know it already, smokers will learn that cigarettes are bad for them from the graphic images)- knowledge does not equal behavior change. Especially when you are dealing with an addictive behavior. Addictive behaviors like smoking and drug use are impacted by much more than a rational weighing of pros and cons. There is the biological component of addiction, local-state-national prevention policies, social norms around the behavior, consequences experienced (or not experienced), ease of access to the substance, social support for quiting, money to support the addiction, etc. As you can see, knowledge alone will not change this kind of complex behavior.

Many of the most successful prevention strategies around this and other public health issues will continue to be a refocus from increasing individual knowledge to changing an environment that supports the behavior. In other words, laws that create smoke-free workplaces and crack down on establishments that sell cigarettes to underage kids will always be more effective at keeping the population healthy versus trying to educate (or scare) one individual at a time.

Your mind as an anabolic steroid

The figure below, taken from Wilmore et al. (2007), is based on a classic 1972 study conducted by Ariel and Saville. The study demonstrated the existence of what is referred to in exercise physiology as the “placebo effect on muscular strength gains”. The study had two stages. In the first stage, fifteen male university athletes completed a 7-week strength training program. Gains in strength occurred during this period, but were generally small as these were trained athletes.


In the second stage the same participants completed a 4-week strength training program, very much like the previous one (in the first stage). The difference was that some of them took placebos they believed to be anabolic steroids. Significantly greater gains in strength occurred during this second stage for those individuals, even though this stage was shorter in duration (4 weeks). The participants in this classic study increased their strength gains due to one main reason. They strongly believed it would happen.

Again, these were trained athletes; see the maximum weights lifted on the left, which are not in pounds but kilograms. For trained athletes, gains in strength are usually associated with gains in muscle mass. The gains may not look like much, and seem to be mostly in movements involving big muscle groups. Still, if you look carefully, you will notice that the bench press gain is of around 10-15 kg. This is a gain of 22-33 lbs, in a little less than one month!

This classic study has several implications. One is that if someone tells you that a useless supplement will lead to gains from strength training, and you believe that, maybe the gains will indeed happen. This study also provides indirect evidence that “psyching yourself up” for each strength training session may indeed be very useful, as many serious bodybuilders do. It is also reasonable to infer from this study that if you believe that you will not achieve gains from strength training, that belief may become reality.

As a side note, androgenic-anabolic steroids, better known as “anabolic steroids” or simply “steroids”, are synthetic derivatives of the hormone testosterone. Testosterone is present in males and females, but it is usually referred to as a male hormone because it is found in much higher concentrations in males than females.

Steroids have many negative side effects, particularly when taken in large quantities and for long periods of time. They tend to work only when taken in doses above a certain threshold (Wilmore et al., 2007); results below that threshold may actually be placebo effects. The effective thresholds for steroids tend to be high enough to lead to negative health side effects for most people. Still, they are used by bodybuilders as an effective aid to muscle gain, because they do lead to significant muscle gain in high doses. Adding to the negative side effects, steroids do not usually prevent fat gain.

References

Ariel, G., & Saville, W. (1972). Anabolic steroids: The physiological effects of placebos. Medicine and Science in Sports and Exercise, 4(2), 124-126.

Wilmore, J.H., Costill, D.L., & Kenney, W.L. (2007). Physiology of sport and exercise. Champaign, IL: Human Kinetics.

Monday, November 8, 2010

Kids, Gender Identity, and Bullying: Moms Fight Back

Last week on Facebook, no less than ten friends posted a link to the Nerdy Apple Bottom website post "My son is gay". The post was written by the mother of a 5-year old boy who dressed as Daphne (from Scooby Doo) for Halloween. She talks about his arrival at school in his costume and the harsh reaction received...mostly from other parents. She documents her internal reaction to this reception, which prompted much discussion and cheering among my Facebook friends:

"If you think that me allowing my son to be a female character for Halloween is somehow going to 'make' him gay, then you are an idiot. Firstly, what a ridiculous concept. Secondly, if my son is gay, OK. I will love him no less. Thirdly, I am not worried that your son will grow up to be an actual ninja so back off".

As of tonight, this post had 41,311 comments.

Coincidentally, the November 15th edition of People Magazine runs a story called "A Tale of Acceptance". The story profiles a Seattle mother named Cheryl Kilodavis who also has a 5-year old son that likes to dress up as a girl character. When the behavior began three years ago, she and her husband discussed it and decided to let him dress how he liked. In order to help other kids accept him, Cheryl decided to write a children's story. She calls her self-published book, "My Princess Boy".

Cheryl first shared the book at her son's school. The vice principal loved it and put copies in all the classes. Cheryl soon had orders from nine other schools and now that there has been so much press coverage, the family is searching for a publisher and trying to keep up with the book requests.

Of course, not all of the press has been positive. A New York Times article late last week discussed some therapists' concerns about these young boys being "outed" by their parents by having their pictures posted on YouTube, blogs, and talk shows. Some commenters wonder why these mothers do not protect their children from ridicule by making them dress in costumes that are more gender appropriate.

The discussion of bullying and suicide over the past few months has seemed to provide a real "teachable moment" for this country. People want to talk about it (as evidenced by the 41,000+ comments on the Nerdy Apple Bottom site). People want to teach kids how to respect themselves and each other. Therefore, they seem fascinated by "My Princess Boy", which uses words and illustrations that can allow even the youngest children to participate in the discussion around personal expression and acceptance. These blogs and books and support from children's schools can really help to change the social norms around what is "normal" behavior and dress. We must be creative in designing a way to evaluate these normative changes. Hopefully we will see a reduction in negative outcomes for students (e.g., reports of bullying, rates of depression, and suicide). But hopefully we will also see a reduction in risk factors further up stream, like attitudes around acceptance and gender roles.



High-heat cooking will AGE you, if you eat food deep-fried with industrial vegetable oils

As I said before on this blog, I am yet to be convinced that grilled meat is truly unhealthy in the absence of leaky gut problems. I am referring here to high heat cooking-induced Maillard reactions (browning) and the resulting advanced glycation endproducts (AGEs). Whenever you cook a food in high heat, to the point of browning it, you generate a Maillard reaction. Searing and roasting meat usually leads to that.

Elevated levels of serum AGEs presumably accelerate the aging process in humans. This is supported by research with uncontrolled diabetics, who seem to have elevated levels of serum AGEs. In fact, a widely used measure in the treatment of diabetes, the HbA1c (or percentage of glycated hemoglobin), is actually a measure of endogenous AGE formation. (Endogenous = generated by our own bodies.)

Still, evidence that a person with an uncompromised gut can cause serum levels of AGEs to go up significantly by eating AGEs is weak, and evidence that any related serum AGE increases lead the average person to develop health problems is pretty much nonexistent. The human body can handle AGEs, as long as their concentration is not too high. We cannot forget that a healthy HbA1c in humans is about 5 percent; meaning that AGEs are created and dealt with by our bodies. A healthy HbA1c in humans is not 0 percent.

Thanks again to Justin for sending me the full text version of the Birlouez-Aragon et al. (2010) article, which is partially reviewed here. See this post and the comments under it for some background on this discussion. The article is unequivocally titled: “A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases.”

This article is recent, and has already been cited by news agencies and bloggers as providing “definitive” evidence that high-heat cooking is bad for one’s health. Interestingly, quite a few of those citations are in connection with high-heat cooking of meat, which is not even the focus of the article.

In fact, the Birlouez-Aragon et al. (2010) article provides no evidence that high-heat cooking of meat leads to AGEing in humans. If anything, the article points at the use of industrial vegetable oils for cooking as the main problem. And we know already that industrial vegetable oils are not healthy, whether you cook with them or drink them cold by the tablespoon.

But there are a number of good things about this article. For example, the authors summarize past research on AGEs. They focus on MRPs, which are “Maillard reaction products”. One of the summary statements supports what I have said on this blog before:

"The few human intervention trials […] that reported on health effects of dietary MRPs have all focused on patients with diabetes or renal failure."

That is, there is no evidence from human studies that dietary AGEs cause health problems outside the context of preexisting conditions that themselves seem to be associated with endogenous AGE production. To that I would add that gut permeability may also be a problem, as in celiacs ingesting large amounts of AGEs.

As you can see from the quote below, the authors decided to focus their investigation on a particular type of AGE, namely CML or carboxymethyllysine.

"...we decided to specifically quantify CML, as a well-accepted MRP indicator ..."

As I noted in my comments under this post (the oven roasted pork tenderloin post), one particular type of diet seems to lead to high serum CML levels – a vegetarian diet.

So let us see what the authors studied:

"... we conducted a randomized, crossover, intervention trial to clarify whether a habitual diet containing high-heat-treated foods, such as deep-fried potatoes, cookies, brown crusted bread, or fried meat, could promote risk factors of type 2 diabetes or cardiovascular diseases in healthy people."

Well, “deep-fried potatoes” is a red flag, don’t you think? They don’t say what oil was used for deep-frying, but I bet it was not coconut or olive oil. Cheap industrial vegetable oils (corn, safflower etc.) are the ones normally used (and re-used) for deep-frying. This is in part because these oils are cheap, and in part because they have high “smoke points” (the temperature at which the oil begins to generate smoke).

Let us see what else the authors say about the dietary conditions they compared:

"The STD was prepared by using conventional techniques such as grilling, frying, and roasting and contained industrial food known to be highly cooked, such as extruded corn flakes, coffee, dry cookies, and well-baked bread with brown crust. In contrast, the STMD comprised some raw food and foods that were cooked with steam techniques only. In addition, convenience products were chosen according to the minimal process applied (ie, steamed corn flakes, tea, sponge cakes, and mildly baked bread) ..."

The STD diet was the one with high-heat preparation of foods; in the STMD diet the foods were all steam-cooked at relatively low temperatures. Clearly these diets were mostly of plant-based foods, and of the unhealthy kind!

The following quote, from the results, pretty much tells us that the high omega-6 content of industrial oils used for deep frying was likely to be a major confounder, if not the main culprit:

"... substantial differences in the plasma fatty acid profile with higher plasma concentrations of long-chain omega-3 fatty acids […] and lower concentrations of omega-6 fatty acids […] were analyzed in the STMD group compared with in the STD group."

That is, the high-heat cooking group had higher plasma concentrations of omega-6 fats, which is what you would expect from a group consuming a large amount of industrial vegetable oils. One single tablespoon per day is already a large amount; these folks were probably consuming more than that.

Perhaps a better title for this study would have been: “A diet based on foods deep-fried in industrial vegetable oils promotes risk factors for diabetes mellitus and cardiovascular diseases.”

This study doesn’t even get close to indicting charred meat as a major source of serum AGEs. But it is not an exception among studies that many claim to do so.

Reference

H Birlouez-Aragon, I., Saavedra, G., Tessier, F.J., Galinier, A., Ait-Ameur, L., Lacoste, F., Niamba, C.-N., Alt, N., Somoza, V., & Lecerf, J.-M. (2010). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American Journal of Clinical Nutrition, 91(5), 1220-1226.

Monday, November 1, 2010

Marie Claire Blogger vs. Mike & Molly: A "Heavyweight" Fight


Last week a blogger for Marie Claire Magazine named Maura Kelly posted an article called, "Should 'Fatties' Get a Room? (Even on TV)?" The post is focused on a new fall sitcom for CBS called "Mike & Molly". I must disclose that I have not watched this show, but have read that it centers on a couple that meets at an Overeaters Anonymous Group. Ms. Kelly takes a strong position that this show is "promoting obesity" and is grossed out by having to watch two obese people make out (or do anything else, like walk across a room).

As you can imagine, this post has been met with quite a reaction, including 3,195 reader comments (as of tonight) that prompted Ms. Kelly to post an update (aka apology). The update apologizes to those readers that were offended (many of which state that they have since canceled their Marie Claire subscription) and offers that perhaps her strong reaction to these overweight actors comes from her own history as an anorexic. The gist I get from the comments, is that most readers do not feel the apology is sincere and expected a better response from Marie Claire (that would include firing Ms. Kelly and/or making it clear that they will not support this type of discrimination). There has also been a strong response from the celebrity community, including Sharon Osborne on "The Talk" who said that she was appalled and wondered about what Ms. Kelly would think of her. Sharon admitted that she's 30 pounds overweight...should she not be allowed to kiss her husband or walk across the room?

According to the Centers for Disease Control and Prevention (CDC), 34% of adults are overweight and about the same percentage are obese. If approximately 70% of our adult population is overweight or obese, why don't we have more characters that accurately reflect what people actually look like and the challenges that they face? Hasn't there been some effort to portray more diverse characters in other ways (e.g., race and ethnicity)? Why would being overweight be so offensive to the viewing population? And is Mike & Molly really the first show to do this? Growing up, I was a fan of the sitcom "Roseanne" (1988-1997). The primary couple on the show (Rosanne Barr and John Goodman) were very overweight and struggled quite openly with weight, diet, and exercise on the show. Perhaps my memory is fuzzy, but I never remember hearing that viewers were horrified by these characters showing affection on the show.

Ironically, as I was getting ready to put this post together today, I caught the Oprah show. She had on Portia Di Rossi who discusses her battle with Anorexia and Bulimia in her new book "Unbearable Lightness".

Portia spoke about her breakout role in Ally McBeal in the 1990s. Many of you may remember the media headlines at that time calling the three female leads "Scary Skinny" (which they were- Portia was down to 82 pounds at one point). Ironically, she specifically discussed her fear about a scene where she seduces her boss in her lingerie in the law office. Although she was skeletal and sick looking, did we hear from viewers or writers that they were "grossed out" to watch her make out with her boss on the show?

So what is best for viewers? What messages regarding "normal" should we be sending to viewers? If actors are too skinny, the concern is that the image is not realistic and it is causing young girls to have eating disorders trying to achieve this ideal. However, when a show like Mike & Molly is showing characters that accurately represent 70% of the population, there is also controversy. From a public health perspective, I would say that characters should accurately reflect the viewing population- people tend to respond to people that they can relate to. If you are creating a health communication product (e.g., poster or brochure), you test it with the target audience to make sure that they connect to the images. If you are concerned about "promoting obesity", then have the characters modeling healthy behaviors. For example, Mike & Molly are attending an Overeaters Anonymous Group, which means they are taking steps to improve their lifestyle.

I for one, would be very happy to see more realistic characters on television. I would also like to see research on how those characters can be used as a health communication tool to promote positive body image and health behaviors among the viewing population.

Amino acids in skeletal muscle: Are protein supplements as good as advertised?

When protein-rich foods, like meat, are ingested they are first broken down into peptides through digestion. As digestion continues, peptides are broken down into amino acids, which then enter circulation, becoming part of the blood plasma. They are then either incorporated into various tissues, such as skeletal muscle, or used for other purposes (e.g., oxidation and glucose generation). The table below shows the amino acid composition of blood plasma and skeletal muscle. It was taken from Brooks et al. (2005), and published originally in a classic 1974 article by Bergström and colleagues. Essential amino acids, shown at the bottom of the table, are those that have to be consumed through the diet. The human body cannot synthesize them. (Tyrosine is essential in children; in adults tryptophan is essential.)


The data is from 18 young and healthy individuals (16 males and 2 females) after an overnight fast. The gradient is a measure that contrasts the concentration of an amino acid in muscle against its concentration in blood plasma. Amino acids are transported into muscle cells by amino acid transporters, such as the vesicular glutamate transporter 1 (VGLUT1). Transporters exist because without them a substance’s gradient higher or lower than 1 would induce diffusion through cell membranes; that is, without transporters anything would enter or leave cells.

Research suggests that muscle uptake of amino acids is positively correlated with the concentration of the amino acids in plasma (as well as the level of activity of transporters) and that this effect is negatively moderated by the gradient. This is especially true after strength training, when protein synthesis is greatly enhanced. In other words, if the plasma concentration of an amino acid such as alanine is high, muscle uptake will be increased (with the proper stimulus; e.g., strength training). But if a lot of alanine is already present in muscle cells when compared to plasma (which is normally the case, since alanine’s 7.3 gradient is relatively high), more plasma alanine will be needed to increase muscle uptake.

The amino acid makeup of skeletal muscle is a product of evolutionary forces, which largely operated on our Paleolithic ancestors. Those ancestors obtained their protein primarily from meat, eggs, vegetables, fruits, and nuts. Vegetables and fruits today are generally poor sources of protein; that was probably the case in the Paleolithic as well. Also, only when very young our Paleolithic ancestors obtained their protein from human milk. It is very unlikely that they drank the milk of other animals. Still, many people today possess genetic adaptations that enable them to consume milk (and dairy products in general) effectively due to a more recent (Neolithic) ancestral heritage. A food-related trait can evolve very fast – e.g., in a few hundred years.

One implication of all of this is that protein supplements in general may not be better sources of amino acids than natural protein-rich foods, such as meat or eggs. Supplements may provide more of certain amino acids than others sources, but given the amino acid makeup of skeletal muscle, a supplemental overload of a particular amino acid is unlikely to be particularly healthy. That overload may induce an unnatural increase in amino acid oxidation, or an abnormal generation of glucose through gluconeogenesis. Depending on one’s overall diet, those may in turn lead to elevated blood glucose levels and/or a caloric surplus. The final outcome may be body fat gain.

Another implication is that man-made foods that claim to be high in protein, and that are thus advertised as muscle growth supplements, may actually be poor sources of those amino acids whose concentration in muscle are highest. (You need to check the label for the amino acid composition, and trust the manufacturer.) Moreover, if they are sources of nonessential amino acids, they may overload your body if you consume a balanced diet. Interestingly, nonessential amino acids are synthesized from carbon sources. A good source of carbon is glucose.

Among the essential amino acids are a group called branched-chain amino acids (BCAA) – leucine, isoleucine, and valine. Much is made of these amino acids, but their concentration in muscle in adults is not that high. That is, they do not contribute significantly as building blocks to protein synthesis in skeletal muscle. What makes BCAAs somewhat unique is that they are highly ketogenic, and somewhat glucogenic (via gluconeogenesis). They also lead to insulin spikes. Ingestion of BCAAs increases the blood concentration of two of the three human ketone bodies (acetone and acetoacetate). Ketosis is both protein and glycogen sparing (but gluconeogenesis is not), which is among the reasons why ketosis is significantly induced by exercise (blood ketones concentration is much more elevated after exercise than after a 20 h fast). This is probably why some exercise physiologists and personal trainers recommend consumption of BCAAs immediately prior to or during anaerobic exercise.

Why do carnivores often consume prey animals whole? (Consumption of eggs is not the same, but similar, because an egg is the starting point for the development of a whole animal.) Carnivores consume prey animals whole arguably because prey animals have those tissues (muscle, organ etc. tissues) that carnivores also have, in roughly the same amounts. Prey animals that are herbivores do all the work of converting their own prey (plants) to tissues that they share with carnivores. Carnivores benefit from that work, paying back herbivores by placing selective pressures on them that are health-promoting at the population level. (Carnivores usually target those prey animals that show signs of weakness or disease.)

Supplements would be truly natural if they provided nutrients that mimicked eating an animal whole. Most supplements do not get even close to doing that; and this includes protein supplements.

Reference

Brooks, G.A., Fahey, T.D., & Baldwin, K.M. (2005). Exercise physiology: Human bioenergetics and its applications. Boston, MA: McGraw-Hill.